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1. Introduction 

AEMO develops a number of demand and supply forecasts for both operational purposes (short-term 

forecasts) and reliability/planning purposes (long-term forecasts) for the National Electricity Market (NEM). 

This document focuses on longer-term electricity demand and supply forecasts and the methodology used 

by AEMO to assess the accuracy of these.  

Within AEMO, these forecasts are used in a number of reliability and planning processes, including Medium 

Term Projected Assessment of System Adequacy (MT PASA), the Electricity Statement of Opportunities 

(ESOO) and the associated reliability forecast1 used for the Retailer Reliability Obligation (RRO), and the 

Integrated System Plan (ISP). Demand forecasts are also used by industry participants and governments for 

their own work.  

To ensure the insights and advice derived from the forecasts are as accurate as can be expected, AEMO uses 

a continuous improvement process which includes the assessment of forecast accuracy, determining causes 

of forecasts deviating from actuals/observed values and identifying and implementing improvements to 

enhance the forecasts in future years.  

The introduction of the reliability forecast under the RRO rules in 2019 increased the importance of the 

forecast accuracy. To assess if the methodologies applied were fit for purpose, AEMO commissioned an 

external review of its forecast accuracy assessment methodology undertaken by University of Adelaide. 

Recommendations arising from the review were adopted by AEMO where practicable to increase the depth 

and breadth of the its forecast accuracy reporting2.  

1.1 Rules requirements  

AEMO is required to publish an assessment of forecast accuracy at least annually in accordance with the 

National Electricity Rules (NER) clause 3.13.3A(h): 

AEMO must, no less than annually, prepare and publish on its website information on: 

(1) the accuracy to date of the demand and supply forecasts, and any other inputs determined by AEMO 

to be material to reliability forecasts; and 

(2) any improvements made by AEMO or other relevant parties to the forecasting process that will apply 

to the next statement of opportunities,  

in accordance with the Reliability Forecast Guidelines (as applicable). 

Where availability of information makes comparisons to older statement of opportunities necessary, AEMO 

may include the statement of opportunities for the preceding 24 months. 

While the clause specifically references accuracy of forecasts and other inputs that materially impact the 

reliability forecast, AEMO’s other reliability and planning processes generally share forecasts to ensure 

consistency, so the forecast accuracy assessment would be equally relevant for all these processes.  

1.2 Forecasting framework  

The process for producing a full reliability forecast can be split into three overall components: 

• Demand forecasts – the forecast load to be met for the NEM. 

 
1 See https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/forecasting-and-reliability/nem-

electricity-statement-of-opportunities-esoo. 

2 See https://www.aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/accuracy-report/forecastmetricsassessment_uoa-aemo.pdf. 

https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/forecasting-and-reliability/nem-electricity-statement-of-opportunities-esoo
https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/forecasting-and-reliability/nem-electricity-statement-of-opportunities-esoo
https://www.aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/accuracy-report/forecastmetricsassessment_uoa-aemo.pdf
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• Supply forecasts – the operational parameters applied for generators, demand side participation (DSP), 

large-scale storage, and transmission network elements. 

• Reliability forecast – the assessment of the ability of available supply to meet demand. 

Each of these comprises various components and needs different inputs. Figure 1 provides an overview of the 

end-to-end process and highlights the different methodology documents that explain the different processes 

and their inputs. In accordance with the Australian Energy Regulator’s (AER’s) Interim Forecasting Best 

Practice Guidelines3, fundamental methodologies needed in the forecasting process must be determined 

using Forecasting Best Practice Consultation Procedures4 at least every four years. 

Figure 1 End to end high-level overview of the reliability forecast process 

 
 

 

 

 

 

 

 

The Interim Forecasting Best Practice Guideline also specifies minimum performance analysis requirements 

for inclusion. In the Interim Reliability Forecast Guidelines5, AEMO has committed to meet those requirements 

in the Forecast Accuracy Report, by including: 

I. an examination of the performance of each forecast component, per NEM region, including:  

 
3 See https://www.aer.gov.au/retail-markets/retail-guidelines-reviews/retailer-reliability-obligation-interim-forecasting-best-practice-guideline. 

4 Available in Appendix A of the Forecast Best Practice Guidelines, link in reference 3. 

5 See https://www.aemo.com.au/-/media/Files/Stakeholder_Consultation/Consultations/NEM-Consultations/2019/Interim-reliability-forecast-

guidelines/Interim-Reliability-Forecast-Guidelines.pdf. 

 

https://www.aer.gov.au/retail-markets/retail-guidelines-reviews/retailer-reliability-obligation-interim-forecasting-best-practice-guideline
https://www.aemo.com.au/-/media/Files/Stakeholder_Consultation/Consultations/NEM-Consultations/2019/Interim-reliability-forecast-guidelines/Interim-Reliability-Forecast-Guidelines.pdf
https://www.aemo.com.au/-/media/Files/Stakeholder_Consultation/Consultations/NEM-Consultations/2019/Interim-reliability-forecast-guidelines/Interim-Reliability-Forecast-Guidelines.pdf
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(A) input drivers of demand;  

(B) energy consumption (annual assessment);  

(C) maximum and minimum demand;  

(D) input drivers of supply;  

(E) supply availability; and  

(F) reliability.  

II. an explanation of the results and any material deviation of trend in differences; and  

III. a list of actions undertaken, or to be undertaken, to improve the accuracy of the forecast and forecast 

components as part of AEMO’s forecasting improvement plan. 

AEMO’s other longer-term demand and supply forecasts, for example the ones used for the ISP, use similar 

components and will be covered by the discussion of the accuracy of the reliability forecast as well. 

1.3 Related documents 

In its Interim Reliability Forecast Guidelines6, AEMO set out its overall framework for producing its reliability 

forecast, including its stakeholder engagement. For the detailed methodologies used in producing the 

forecast, it referred to separate methodology reports: 

• Demand Side Participation Forecast and Methodology Paper. 

• Electricity Demand Forecasting Information Paper. 

• ESOO and Reliability Forecast Methodology Document. 

This document completes the suite, explaining how forecast performance is assessed.  The latest versions of 

these documents are available from AEMO’s website7. 

The outcome of the University of Adelaide review of AEMO’s forecast performance analysis is also available 

on AEMO’s website8.  

1.4 Structure of document 

This document is structured the following way: 

• Section 2 discusses methodologies for adjusting demand observed to match the definition forecast. 

• Section 3 identifies four categories of forecast used by AEMO that require differing approaches for 

assessing accuracy. 

• Section 4 discusses methodologies relevant to the forecast inputs. 

• Section 5 discusses methodologies relevant to the demand forecasts. 

• Section 6 discusses methodologies relevant to the supply forecasts. 

  

 
6 See https://aemo.com.au/en/consultations/current-and-closed-consultations/interim-reliability-forecast-guidelines. 

7 See https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/scenarios-inputs-assumptions-

methodologies-and-guidelines.  

8 See https://aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/accuracy-report/forecastmetricsassessment_uoa-aemo.pdf.  

https://aemo.com.au/en/consultations/current-and-closed-consultations/interim-reliability-forecast-guidelines
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/scenarios-inputs-assumptions-methodologies-and-guidelines
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/scenarios-inputs-assumptions-methodologies-and-guidelines
https://aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/accuracy-report/forecastmetricsassessment_uoa-aemo.pdf
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2. Adjusting demand 

AEMO’s demand forecast represents demand in the absence of any load shedding, use of non-market 

reserves (RERT), and DSP. DSP is forecast separately, and included in AEMO reliability modelling on the 

supply side of the equation as per Figure 1. Over the course of the year, such impacts are rare and generally 

insignificant when comparing actual annual energy consumed with forecast. But on individual maximum and 

minimum demand days, the impact can be significant and appropriate adjustments are required to be able to 

compare demand on these days with the Probability of Exceedance (POE) forecast, for example, when 

assessing the accuracy of these forecasts.  

In addition to the metered demand, AEMO operates with two different demand adjustments, as shown in 

Figure 2.  

Figure 2 Relationship between metered demand, actual demand, and adjusted demand 

 
 

AEMO may apply adjustments for: 

• Very high demand days both during summer and winter 

• Very low demand days across the year. 

• Exceptional, long duration outages of major loads, if affecting annual energy consumption that year.  

2.1 Actual demand 

Actual demand is defined to be consistent with the RRO as outlined in the Interim Reliability Forecast 

Guidelines9 (Section 6.3) in order to meet the requirements in NER clause 4A.A.4(b). Here, actual demand 

represents metered demand plus the following adjustments: 

• Directions by AEMO to generation or loads. 

• RERT activated or dispatched by AEMO. 

• Load shedding directed by AEMO. 

 
9 See https://aemo.com.au/-/media/files/stakeholder_consultation/consultations/nem-consultations/2019/interim-reliability-forecast-guidelines/interim-

reliability-forecast-guidelines.pdf. 
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All these adjustments are controlled by AEMO, allowing actual demand to be published soon after the actual 

event10. Publishing soon after the actual event means all the components above are based on the amount 

directed/dispatched/activated by AEMO, rather than a post-event assessment of the actual delivery of these 

amounts, which (due to the settlement process) may take weeks. So, if AEMO activated 40 MW of RERT 

contracts and directed 20 MW of load shedding, the adjustment would be 60 MW in total, even though later 

settlement data may show that the RERT only delivered 38 MW and 25 MW of load was estimated to be 

impacted by the shedding.  

2.2 Adjusted demand 

It is appropriate to make further adjustments of demand, beyond those included in the actual demand 

definition above, to estimate what demand would have been under normal circumstances and allow a like-

for-like comparison with the forecasts.  

AEMO has split the adjustments into two broad categories11:  

• Firm – these are possible to estimate based on settlement metering data (of individual loads and 

non-scheduled generators), and cover components like DSP and impacts of distribution network outages. 

This can also include a more comprehensive estimate of the actual response from activated RERT and 

AEMO directed loads, non-scheduled generation, and load shedding, if evidence indicates this is 

substantially different from the directed amount included in actual demand. 

• Potential – these adjustments are more approximate, and are based on an expectation of behavioural 

responses that cannot be verified (easily) by meter data analysis. This covers cases where the public in 

advance is asked to conserve energy because the system is forecast to be strained in the coming day.  

The methodologies used to estimate these adjustments are discussed below.  

Firm adjustment – DSP price response 

For regional high demand days with high prices (at least one half-hour with wholesale prices exceeding 

$1,000/MWh), AEMO estimates DSP response from looking at the metered consumption from all larger 

customers in the region during the event, and compares this with the period just before and after the event, 

to define baseline consumption.  

Figure 3 illustrates this showing an example day. As the firm adjustment, AEMO will use DSP response for the 

period (in the example 13:30 to 21:00) where it differs significantly from zero.  

Figure 3 Example DSP response calculation based on half-hourly load measured across large customers  

 

 
10 Publishing of adjusted demand is still in development, with no firm delivery date. 

11 As first presented in Appendix A1 in AEMO’s Summer 2019 Forecast Accuracy Update, at https://www.aemo.com.au/-/media/Files/Electricity/NEM/

Planning_and_Forecasting/Accuracy-Report/2019-Summer-Forecast-Accuracy-update.pdf. 

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/Accuracy-Report/2019-Summer-Forecast-Accuracy-update.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/Accuracy-Report/2019-Summer-Forecast-Accuracy-update.pdf
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This approach may leave out DSP from smaller customers. Some of these would be covered under RERT (see 

Section 2.1 above) or the DSP reliability programs (see below), but overall the combined DSP response used 

in the firm adjustment is most likely slightly lower than what was actually delivered across all customers. 

While AEMO is currently focusing on the larger sites, AEMO will consider the addition of smaller, more 

varying loads if good estimates can be found for individual days through methodology improvements made 

to AEMO’s DSP forecasting work.  

Firm adjustment – DSP reliability programs 

The price response is supplemented by estimated impacts of network reliability programs, as provided by the 

operating network service provider (NSP). For example, AEMO obtains an estimated response from Ausnet’s 

Critical Peak Day program after the days where this has been called. AEMO reviews DSP response estimates 

for materiality and feasibility.  The response estimate is also validated against known ranges of response 

levels for the relevant technology. 

AEMO may over time replace the NSP’s estimate with its own, developed from information reported through 

the DSP Information (DSPI) Portal. 

Firm adjustment – distribution outages 

AEMO adjusts for any significant outages (events affecting at least 20,000 customers during one of the annual 

peak demand days). For example, lost customer load due to major storm related outages in the distribution 

network.  Adjustments will be made for all half hours during these events including half hours where less than 

20,000 customers were disconnected. 

For this adjustment, AEMO seeks an estimate of customers without power for the relevant period from the 

relevant NSP, or an estimate of the impact in MW directly if available.   

If AEMO can only get an estimate of customers not supplied, this is translated into a MW impact using an 

assumed diversified customer demand of 2 kilowatts (kW) per customer, which reasonably reflects average 

customer load at time of maximum demand conditions. The 2 kW/customer figure was obtained through a 

June 2020 survey of NSPs targeting average residential load at time of maximum demand (over a large 

geographical area); 2 kW was the average of the survey results.   

AEMO will not make adjustments for smaller outages (where the maximum number of affected customers is 

fewer than 20,000), or for outages in general on lower demand days, unless this caused a minimum demand 

event.  

Table 1 below show an example of each estimation rule.  

Table 1 Example calculation of the impact on demand in MW of customers affected by an outage 

Date and NEM time (period ending) Estimate of customers not served Estimated MW impact 

3 February 2020, 18:30 15,000 30 MW 

3 February 2020, 19:00 25,000 50 MW 

3 February 2020, 19:30 7,500 15 MW 

3 February 2020, 20:00 0 0 MW 

4 February 2020, 17:00 6,200 0 MW 

4 February 2020, 17:30 4,000 0 MW 

4 February 2020, 18:00 2000 0 MW 

4 February 2020, 18:30 1000 0 MW 
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Firm adjustment – re-estimate of directions or RERT activation 

Sometimes actual response differs from the AEMO directions or dispatch orders . Once settlement data is 

available, AEMO may revisit the estimated response if it is found likely it may differ from the directions. In that 

case, the adjustment will be calculated similar to the DSP price response discussed above. Note: as this will 

happen weeks after the event, it will only be relevant for assessing forecast accuracy, and will not be used to 

reassess actual demand for purpose of the RRO.  

Potential adjustment – voluntary load reductions 

On occasion, state governments or utilities make public appeals (through television, radio, and other media) 

for electricity users to conserve electricity usage, when possible and safe to do so.  

This option to reduce demand is only available if reliability issues have been foreseen the day ahead to allow 

sufficient time for the message to be disseminated to the public. Most often this is not the case, as issues 

arise due to sudden compounding impacts of generator and/or transmission outages on high demand days 

that had not otherwise been seen as extreme. For this reason, unlike DSP, voluntary load reductions of this 

kind are not included in the ESOO modelling.  

AEMO’s approach to estimating voluntary load reduction is to utilise the Demand Reduction Calculator (DRC) 

tool to determine the expected value for each appliance type’s total load (in the absence of the voluntary 

load reduction), and then apply subsequent layers of real-world conditions to arrive at an estimated 

reduction. 

The DRC is primarily used by jurisdictions for emergency planning. It assesses the impact on demand for a 

mandated reduction in use of different appliance types and is based on estimated daily load profiles per 

appliance type for each NEM region. While the load profiles are rebased every year, the underlying data on 

appliances are based on data from the Residential Baseline Study12, most recently updated in 2015. As the 

DRC holds the ‘expected values’ (statistical terminology) of appliance type load, they already incorporate the 

average usage rate for a particular appliance type at a particular time of day. AEMO uses the DRC, but with a 

much lower compliance rate to reflect only a fraction of those receiving the message choosing to act. 

Thus, AEMO takes the DRC’s expected load as a 100% baseline, and from this: 

• Removes the proportion of people who don’t receive the message promoting voluntary reduction . 

Typically, AEMO will assume 50% for this factor.   

• Then removes the proportion of people who are exempt from responding to the reduction (such as life 

support equipment). Typically, AEMO will assume 5% for this factor. 

• Then applies the voluntary response level (reduction or deferral), as detailed below in Table 2.  

Table 2 Typical voluntary appliance consumption reduction settings 

Appliance type Assumed reduction in consumption 

Lighting 10% 

Pool pumps 20% 

Washers/dryers 50% 

Dishwashers 50% 

Computers and IT 10% 

Home entertainment 10% 

 

 
12 See https://www.energyrating.gov.au/document/report-residential-baseline-study-australia-2000-2030. 

https://www.energyrating.gov.au/document/report-residential-baseline-study-australia-2000-2030
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For a high demand day in New South Wales, this will result in a possible reduction as shown in Figure 4 

below.  

Figure 4 Example voluntary demand reduction curve for New South Wales 

 
 

The possible response (blue line) is computed from the weighted average appliance usage rates at the 

relevant day type and time, and adjusted for: 

• Only 50% of customers receiving the energy conservation request. 

• 5% with exemptions. 

• The assumed voluntary response rates. 

The profiled response (orange line) reflects the ramp up from zero response to the full possible response over 

two hours, and ramp down later, ending up negative (representing increased demand from consumption for 

appliances that have been postponed, such as dishwashers and washing machines).   

Another potential source of voluntary response is from heating/cooling. Typically, reduction requests come 

on hot days and encourage consumers to set a higher than usual temperature on air-conditioners to lower 

consumption. Air-conditioner usage is the key driver behind the peak demand days in summer and the 

potential for reducing demand is significant.  

AEMO is still building understanding of the impact of changing the thermostat settings, and currently applies 

a 50 MW reduction in New South Wales (less in the other regions), using a profile similar to Figure 4, 

although excluding the rebound at the end.  

Analysis of the model used to assess saturation of energy efficiency measures on extreme demand days 

reveals a three-degree difference in ambient temperature can cause approximately a 200 MW difference in 

residential cooling load in New South Wales (~70 MW per degree, as per Figure 5). From this, AEMO similarly 

assumes a three-degree increase in average customer thermostat settings can give a reduction of around 

200 MW for the same ambient temperature. Presuming that 50% of all customers get notified, and 50% of 

these make the adjustment to set the thermostat three degrees higher, the resulting impact is 50 MW.  

The 50 MW, combined with the other voluntary response discussed above (160 MW in total), is broadly 

consistent with previous estimates of the impact of voluntary calls for reduction. For example, for a call for 



 

© AEMO 2020 | Draft Forecast Accuracy Report methodology 13 

 

voluntary reduction of consumption on 10 February 2017, AEMO estimated a 200 MW impact in New South 

Wales13. 
Figure 5 Estimated maximum daily residential demand vs maximum daily temperature, New South Wales  

 
 

 
13 See https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Incident-report-NSW-10-

February-2017.pdf. 

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Incident-report-NSW-10-February-2017.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Incident-report-NSW-10-February-2017.pdf
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3. Categories of forecast 
in use 

3.1 Representing uncertainty 

There are numerous uncertainties that must be considered when forecasting the future of the power system. 

The nature of the uncertainty varies, depending on the forecast timeframe. For example, a month ahead 

forecast will predominantly consider uncertainties in consumer behaviour, industrial production, and 

generator availability; a 10 year ahead forecast will consider broader uncertainties in the economic, social, and 

technological progression of society. 

AEMO represents these uncertainties in two parts: 

• Structural drivers, which are modelled as scenarios, including considerations such as:  

– Population.  

– Economic growth.  

– Electricity price. 

– Technology adoption. 

– Generation production and construction costs. 

– Greenhouse gas emission policies. 

• Random drivers, which are modelled as a probability distribution, including considerations such as: 

– Weather-driven coincident customer behaviour. 

– Non-weather-driven coincident customer behaviour. 

– Weather-driven generation output. 

– Transmission failure rates and available capacity. 

– Generator failure rates and available capacity. 

The above structure used to represent uncertainty applies to both input forecasts (photovoltaic [PV] uptake, 

generator failure rates), and component-based output forecasts (energy consumption, system reliability). 

3.2 Deterministic (point) forecasts 

The scenarios are constructed using deterministic forecasts of the structural drivers, meaning each scenario is 

assigned a set of parameters that describe a future state. These deterministic parameters are not subject to 

further uncertainty.  

The following table is a demonstration of a deterministic input taken from the 2019 Forecast Accuracy 

Report14. Each scenario (Slow Change, Neutral, Fast Change) was assigned a forecast rate of residential 

connections growth. While actual growth could plausibly have taken any value between 0% and 3%p.a., the 

uncertainty was simplified to three scenarios for easy consumption and comparison. 

 
14 See https://www.aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/accuracy-report/forecast_accuracy_report_2019.pdf. 

https://www.aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/accuracy-report/forecast_accuracy_report_2019.pdf
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Table 3 Forecast and actual residential connections growth rate comparison. 2018-19 (%) 

 NSW QLD SA TAS VIC 

Actual (Jun18-Jun19) 1.4% 1.4% 1.0% 1.2% 1.9% 

Slow Change scenario 1.6% 1.5% 1.2% 0.7% 1.7% 

Neutral scenario 1.8% 1.7% 1.3% 0.8% 1.9% 

Fast Change scenario 2.0% 1.9% 1.5% 0.9% 2.1% 

Note. The difference between forecast and actual performance in connections growth was the catalyst for a forecast improvement item. 

See the 2019 Forecast Accuracy Report for more detail. 

3.3 Probabilistic forecasts 

Random drivers are included in numerous forecasts, through the inclusion of a full probability distribution. 

Figure 6 demonstrates how large uncertainties in both weather and the consumer response to weather result 

in a probability distribution of temperatures at time of maximum demand. These random drivers are not 

subject to any discrete sampling, and forecast outcomes are identified through mathematically applied 

probability functions, or large numbers of Monte Carlo simulations. 

Figure 6 South Australia simulated temperature at time of maximum demand 

 
 

3.4 Summary of forecast categories 

Using the above definitions, it is possible to represent all AEMO reliability forecast components in a simple 

grid, shown in Table 4.  

The four quadrants reflect fundamentally different forecast processes that require four different approaches 

to measuring and reporting on forecast accuracy. These four categories will be referenced throughout the 

methodology report to describe the unique characteristic requiring consideration.  



 

© AEMO 2020 | Draft Forecast Accuracy Report methodology 16 

 

Table 4 Matrix of forecast categories 

 Deterministic Probabilistic 

Input forecasts • Economic and population growth 

• Energy efficiency 

• DER uptake 

• New generator connections 

• Generator available capacity 

• Transmission failure rates, losses and available 

capacity 

• Atmospheric greenhouse gas concentrations and 

related impacts 

 

simple percentage error metrics are most 

appropriate 

• Weather and the related time-series impact on 

consumer behaviour, transmission capacity, generator 

output and asset failure rates. 

 

 

 

 

 

 

qualitative description of accuracy may be most 

appropriate 

Component-

based output 

forecasts 

• Operational energy consumption 

 

 

 

 

 

 

 

best to assess the contribution of each input to 

aggregate accuracy 

• Minimum and maximum demand 

• Connection point forecasts 

• Demand and VRE traces 

• Demand side participation 

• Supply availability 

• Reliability 

 

challenging to assess accuracy using a single 

observation, requiring exploratory analysis and 

qualitative justification 
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4. Input forecasts 

Electricity demand and supply forecasts are predicated on a wide selection of inputs and assumptions. 

Models incorporate numerous forecast components, including: 

• Economic growth and population. 

• Distributed PV and behind-the-meter batteries. 

• Energy efficiency and appliance mix. 

• Electric vehicles (EVs). 

• New generator connections. 

• Generator forced outage rates. 

Some of these forecasts are provided to AEMO by external consultants, while others are developed internally. 

This section describes the methods that are used to assess the accuracy of these forecasts. 

The purpose of assessing the accuracy of input forecasts is to determine whether the scenario settings of the 

structural drivers are a good reflection of what happened. Given the importance of the Central/Neutral 

scenario in reliability analysis, most performance analysis will focus on the accuracy of this scenario, unless 

there is good reason to explore another. 

Most inputs are deterministic, the most notable exception being weather. If actuals are available, are assessed 

by measuring the percentage difference between actual and forecast values of the published forecasts. There 

are four methods for calculating percentage error, that may vary the calculated error if used interchangeably. 

 

Calculation Discussion 

𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓 =
𝒂𝒄𝒕𝒖𝒂𝒍−𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕

𝒂𝒄𝒕𝒖𝒂𝒍
 x 100 A positive number indicates the actual is above forecast. Most statistically accurate 

with a somewhat intuitive interpretation for many users. 

𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓 =
𝒂𝒄𝒕𝒖𝒂𝒍−𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕

𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕
 x 100 Intuitive for those who think of forecasts as budgets. A positive number indicates 

the actual is above forecast. Introduces statistical bias when evaluating 

performance across multiple models. 

𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓 =
𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕−𝒂𝒄𝒕𝒖𝒂𝒍

𝒂𝒄𝒕𝒖𝒂𝒍
 x 100 A positive number indicates the forecast was an over-estimate of actual. 

Statistically accurate but less intuitive for some users. 

𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓 =
𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕−𝒂𝒄𝒕𝒖𝒂𝒍

𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕
 x 100 A positive number indicates the forecast was an over-estimate of actual. Introduces 

statistical bias when evaluating performance and is less intuitive for many users. 

 

AEMO uses the third method for all accuracy assessments to ensure consistency, as a trade-off between 

statistical accuracy and ease of interpretation. 

AEMO publishes forecast and observed values alongside forecast accuracy metrics for all forecast 

components where actual values are available. Values may be published in either graph or tabular format. 

Where an input is subject to confidentiality requirements, AEMO may choose to either aggregate or not 

publish updated data. 

Given the complex multiple variable nature of weather, the assessment of weather will remain entirely 

qualitative and descriptive. AEMO includes many weather years in all simulations, so discussion will consider 

whether the observed weather was materially different from the weather years included, and any other 

distinguishing features. 
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5. Demand forecasts 

This section discusses the methodology used to assess the accuracy of the demand forecast components in 

AEMO’s forecast accuracy reporting. The DSP forecast is covered in the Supply section (see Figure 1).  

The purpose of assessing accuracy of demand forecasts is to determine any material bias in the forecasts and 

identify the contribution of the input forecasts to aggregate accuracy. While the percentage error metric 

shown in Chapter 4 is applicable, it would provide no guidance on sources of inaccuracy. Assessments of 

accuracy must identify the sources of inaccuracy so proposed improvements can target the inputs or models 

that will generate the largest improvement in accuracy. 

5.1 Operational energy consumption 

AEMO forecasts annual energy consumption by region, on a financial year basis, for each pre-defined 

scenario. Given the relatively low influence of DSP, outages, and load shedding on consumption volumes, 

operational energy consumption is not subject to adjustments. 

To better interrogate the drivers of forecast accuracy, AEMO extends the percentage error metric previously 

discussed. The operational energy consumption model is built using an econometric regression of the 

scenario input variables. For each relevant input variable, the forecast, actual and percentage difference is 

reported; as well as the impact on aggregate accuracy. The coefficient from the econometric model can be 

used to identify the impact as per the following equation 1 (or similar depending on forecast model 

specification), while the equation for the waterfall component is expressed in equation 2. 

1. 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑛 𝑡𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑖𝑛𝑝𝑢𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 .  (𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 −𝑖𝑛𝑝𝑢𝑡 𝑎𝑐𝑡𝑢𝑎𝑙)

𝑂𝑃𝐺𝐸𝑁 𝑎𝑐𝑡𝑢𝑎𝑙
 x 100 

2. 𝑒𝑟𝑟𝑜𝑟 𝑓𝑟𝑜𝑚 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑖𝑛𝑝𝑢𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡. (𝑖𝑛𝑝𝑢𝑡 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡) 

This metric brings context to the input variable inaccuracy, where large variable inaccuracy may only have 

negligible impacts on total generation. All residuals not explained by input variables will be reported 

separately, and are likely indicative of model (not input) error. Just like the model specification itself, this 

method assumes the input variables are independent of each other. The following examples show the South 

Australia energy consumption component variance table and chart with commentary to demonstrate 

interpretation.  

Table 5 Example: South Australia energy consumption forecast accuracy by component 

Category 2018 Neutral 

forecast  

Actual Difference (%) Indicative impact on 

total generation 

Cooling degree days 436.3 685.1 -36.3% -2.0% 

Heating degree days 724.6 659.3 +9.9% -0.2%15 

Rooftop PV (GWh) 1,523.0 1,373.7 +10.8% -1.2% 

Small non-scheduled generation (GWh) 228.2 173.1 +31.8% -0.4% 

Network losses (GWh) 1,131.2 966.6 +17.0% +1.3% 

Operational sent out (GWh) 12,053.4 12,147.1 -0.8% -0.8% 

Auxiliary load (GWh) 325.5 294.2 +10.6% +0.3% 

Operational as generated (GWh) 12,378.9 12,441.3 -0.5%  

 
15 Despite reduced heating load for residential customers, heating related business variance was positive and greater. 
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Figure 7 Example: Energy consumption component variance chart, South Australia 

 
 

Example interpretation 

The annual energy consumption forecast (12,379 gigawatt hours [GWh]) is shown as the first bar in the 

waterfall chart, while the actual energy consumption for 2018-19 (12,441 GWh) is shown as the last bar, a 

value that is 0.5% higher than forecast. The bars in between indicate the component contribution to the 

difference between forecast and actual values, where light orange represents a positive impact, and 

charcoal represents a negative impact. The residual captures all difference not explainable by the 

variations in identified input components. 

In this example, there are positive contributions from cooling load, heating load, rooftop PV and 

non-scheduled generation, and a negative contribution from losses and auxiliary. The difference between 

forecast and actual bars that is attributable to these variables is best resolved through examination of the 

input forecasts. Forecast difference that cannot be explained by the components and falls into the 

residual may be caused by input variables that cannot be measured, or by the energy consumption 

model itself. In this example, the small positive residual implies that, given observed inputs, the forecast 

model would have expected an actual that was slightly higher and a small downward revision in forecast 

may be considered alongside input forecast updates. 

 

5.2 Maximum and minimum demand 

AEMO produces forecasts of the probability distributions of seasonal minimum and maximum half-hourly 

demand. These forecasts are compared against adjusted demand, as explained in Section 2, as if no load 

shedding or demand side participation has occurred. The purpose of the forecast performance assessment is 

to understand any sources of inaccuracy, so that improvements can target the inputs or models that will 

generate the largest accuracy improvements.  

These forecasts are developed through a computationally intensive simulation process and are summarised 

for industry as 10%, 50%, and 90% POE forecasts. Given each year comprises a single actual, while the 

forecast comprises a wide range of possible occurrences, assessing accuracy is challenging. While weather is a 

large source of the uncertainty represented in the probability distribution, it is not the only driver. Customer 

demand is highly erratic and only becomes forecastable when aggregated among many customers. While 

weather drives customers towards coincident appliance use, other factors remain a large variant – the “known 

unknowns”. Even when all measurable variables are known, there will still be a wide range of possible 

outcomes driven by the uncertainty in coincident consumer behaviour. 
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There are numerous methods available to assess the performance of these forecasts. Some of these methods 

are described below. 

Qualitative comparison of observed demand to the forecast distribution 

The primary method of reporting accuracy of minimum/maximum demand forecasts is a qualitative 

comparison, specifying where on the forecast distribution the observed minimum/maximum demand lies and 

providing contextual factors that may explain this. For example:  

“In New South Wales 2017, maximum demand occurred on 10 February 2017, when the temperature 

reached 43.7°C. The actual maximum demand may have been higher if it hadn’t been for a general call for 

reduced consumption and engagement of DSP. Accounting for an estimated combined 490 MW of load 

reductions, the adjusted maximum demand exceeded the forecast of 10% POE demand.” 

Percentage error of actual relative to the 50% POE forecast 

This method follows the same process expressed in Section 4, simply comparing the actual to the 50% POE 

(median) of the forecast distribution. While easily understood, the accuracy assessment ignores the remainder 

of the forecast distribution and provides no insights as to the cause of the difference from the 50% POE, or 

whether the difference is expected. For example: 

90% POE 50% POE 10% POE Actual P.E. 

288.03 295.63 305.50 286.99 +3% 

Comparison of the distribution of individual key drivers 

Alongside the forecast distribution of minimum/maximum demand, the distribution of key drivers at the 

(simulated) minimum/maximum demand(s) can also be reported. Reporting these quantities at the observed 

minimum/maximum demand interval, compared to the distribution that produced the forecast, provides 

valuable context. For example: 

  
 

Example interpretation 

The actual summer maximum demand for South Australia was above the 10% POE forecast. 

South Australia experienced a hot period in late January, with an annual maximum temperature recorded 

earlier in the day of 46.6°C. The day also saw the hottest minimum daily temperature of 30.7°C. 

The maximum was expected to occur late in the day, when PV output was low or zero. Actual maximum 

demand occurred late in the day, with zero PV output, at a temperature towards the upper end of the 

expected temperature distribution. 
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Monthly demand trace forecast performance 

Using operational energy consumption, summer and winter maximums, and minimum demand forecasts, 

AEMO develops half hourly demand traces that match reference years for market modelling. To further 

explore demand forecast accuracy, the observed monthly maximum demand can be plotted against a box 

and whisker plot of the monthly maximums forecast in the demand traces. AEMO uses both 10% and 50% 

POE traces to develop the box and whiskers plot. These plots provide additional context as any biases or 

inaccuracies observed in energy forecasts, or extreme demand forecasts will likely also be visible in the 

monthly outcomes. An example (from the 2018 Forecast Accuracy Report16) is shown below, where almost all 

observed monthly maximum values lie within the forecast range. 

 

Probabilistic forecasting statistics 

There are numerous statistics designed to evaluate the performance of probabilistic forecasts, including the 

Kolmogorov-Smirnov statistic, Mean Absolute Excess Probability, Score, and Relative Score. These statistics all 

evaluate the degree to which a forecast distribution matches a set of actuals, but all rely on as large a set of 

actuals as possible.  

In this instance, the forecast is focused on the distribution of possible annual maximum demands, of which 

there is only one new actual per year. Therefore, the single additional data point each year provides limited 

value in assessing accuracy out of sample. Additionally, the statistics provide no insight into the source of the 

inaccuracy, should it be driven by model inputs rather than the model itself. In the recent review of forecast 

accuracy metrics, the University of Adelaide made numerous recommendations about these statistics for 

AEMO internal reporting and model evaluation purposes. There is limited benefit for external, particularly 

non-statistical audiences. 

Backcasting 

Backcasting has been used by AEMO previously to evaluate the forecast regression fitted to observed inputs, 

presented without stochastic volatility for the 15 highest observed demand intervals in each region. AEMO 

demand models, however, utilise stochastic volatility to model elements of coincident consumer behaviour. 

As such, the backcasts of days with high levels of coincident consumer behaviour always indicate an apparent 

underforecast, while in reality the backcast does not provide relevant information regarding the accuracy of 

the forecast. In the recent review of forecast accuracy metrics, the University of Adelaide suggested 

discontinuation of this metric. An example (from the 2018 Forecast Accuracy Report17) is shown below, where 

almost all backcast values lie below observations. 

 
16 See https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/Accuracy-Report/Forecast-Accuracy-report-2018.pdf. 

17 See https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/Accuracy-Report/Forecast-Accuracy-report-2018.pdf. 

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/Accuracy-Report/Forecast-Accuracy-report-2018.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/Accuracy-Report/Forecast-Accuracy-report-2018.pdf
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Hindcasting 

Hindcasting involves comparing a forecast that was made historically with a forecast that would be made now 

for that year, including inputs as actually observed. The purpose of this method is to compare the forecast 

distribution without known inputs to the forecast distribution using the actual input drivers, thereby 

elucidating the impact of the forecast drivers on the forecast. The example below shows the difference 

between the forecast and the hindcast. In this example, given known inputs, the probability distribution has 

narrowed. 

 

 
 

This method describes the scale and direction of the forecast error, and the shape of the unexplainable 

components, represented by the hindcast distribution width. If the actual falls outside the hindcast, it indicates 

that the actual was unlikely based on the model, however a single new observation does not confirm model 

bias, and as it does not interrogation the input variables, it does not indicate the source of any error. 
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Summary 

The methods for describing accuracy of maximum and minimum demand forecasts are summarised below. 

 

 Method Discussion 

A qualitative comparison of the observed 

demand to the forecast distribution 
Easy to implement and very useful for establish context about the 

attributes of the event in question. 

Percentage error of actual relative to 50% 

POE 
Easy to implement and understand but fails to provide context about the 

performance of the probabilistic forecast, or any contribution from the input 

variables. 

A comparison of the distribution for 

individual key drivers. 
More complex to implement and understand but provides 

supplementary context about the contribution of the input variables, and 

any performance issues in the demand models themselves. 

Monthly demand trace forecast 

performance 

 

Easy to implement and understand and provides additional context and 

verification of performance from the array of forecasts that input to the 

demand traces. 

Probabilistic forecasting statistics Particularly challenging to implement with few observations, and to 

understand. Provide little context about the contribution of input variables to 

the performance of the forecast. 

A backcast of the top observed demand 

intervals 
More complex to implement and understand and is inconsistent with the 

forecast methodology, providing no context about the performance of the 

forecast. 

A hindcast of the forecast distribution with 

inputs as observed  
More complex to implement and understand but provides useful insights 

about the performance of the forecast, once all input variables are 

accounted for. 

 

AEMO uses the first, third, and fourth methods in combination for all accuracy assessments to ensure 

consistency and ease of understanding for a non-statistical audience. In combination, these should sufficiently 

elucidate the source of forecasting inaccuracies for the effective development of an improvement plan.  

AEMO also uses the sixth method when it considers that the significant additional performance analysis is 

warranted to gain a greater understanding of the probabilistic forecast accuracy. 
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6. Supply forecasts 

This section discusses the methodology used to assess the accuracy of the supply forecast components in 

AEMO’s forecast accuracy reporting.  

The purpose of assessing accuracy of supply forecasts is to determine any material bias in the forecasts and 

identify the contribution of the input forecasts to aggregate accuracy. While the percentage error metric 

shown in Chapter 4 is applicable, it would provide no guidance on sources of inaccuracy. Assessments of 

accuracy must identify the sources of inaccuracy so proposed improvements can target the inputs or models 

that will generate the largest improvement in forecast performance.  

6.1 Demand side participation  

AEMO forecasts DSP for use in its medium- to long-term reliability assessments (MT PASA, Energy Adequacy 

Assessment Projection [EAAP], and ESOO) as well as the ISP. It represents reduction in demand from the grid 

in response to price or reliability signals. In AEMO’s modelling, it is treated similarly to supply options as a 

way to ensure demand can be met.  

AEMO forecasts two broad categories of DSP18: 

• Market-driven responses – this category includes residential, commercial, and industrial responses that are 

typically triggered in response to high electricity prices.  

• Reliability event responses – this category includes responses that are called on when power system 

reliability requires support. They are most common under Lack of Reserve (LOR) conditions, although they 

often also coincide with high wholesale prices. These responses can be contracted. 

Price-driven DSP responses vary significantly from time to time, even for identical market price outcomes, as 

the decision to respond (or not) is affected by a number of external factors, including contracting levels and 

duration of the price spike19. AEMO has therefore developed a process that investigates the recent 

(three-year) historical distribution of DSP responses for different price triggers, and AEMO has adopted the 

50th percentile of historical response as its estimate of expected DSP (half the time response will be higher, 

half the time it will be lower) for each trigger level. 

AEMO’s assessment of DSP forecast accuracy is based on two components:  

• An assessment of the median (50th percentile) observed DSP response for various wholesale price 

triggers20 during the most recent year compared to forecast median response.  

• An assessment of the estimated DSP response during the regional maximum demand events against the 

forecast DSP reliability response. 

The first component assesses the accuracy of the forecast price response in general when comparing with the 

estimated actual response. The second assessment is to check if the estimate is reasonable for the highest 

demand days in particular.  

Observed median response by price trigger 

The observed median response is found using the same tool and baseline approach (to assess individual DSP 

response outcomes) as used to produce the DSP forecast. The forecast assesses the response as the median 

 
18 See further details in https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/NEM_ESOO/2019/Demand-Side-Participation-

ForecastMethodology-2019.pdf.  

19 This is discussed in more detail in the Demand Side Participation Forecast Methodology consultation paper from February 2020, at 

https://www.aemo.com.au/-/media/files/stakeholder_consultation/consultations/nem-consultations/2020/demand-side-participation/demand-side-

participation-forecast-methodology-consultation-v4.pdf. 

20 AEMO currently models the following price triggers: $300/MWh, $500/MWh, $1000/MWh, $2500/MWh, $5000/MWh, and $7500/MWh. 

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/NEM_ESOO/2019/Demand-Side-Participation-ForecastMethodology-2019.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/NEM_ESOO/2019/Demand-Side-Participation-ForecastMethodology-2019.pdf
https://www.aemo.com.au/-/media/files/stakeholder_consultation/consultations/nem-consultations/2020/demand-side-participation/demand-side-participation-forecast-methodology-consultation-v4.pdf
https://www.aemo.com.au/-/media/files/stakeholder_consultation/consultations/nem-consultations/2020/demand-side-participation/demand-side-participation-forecast-methodology-consultation-v4.pdf
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of all estimated responses each time a wholesale price trigger was reached in the three years leading up to 

the forecast being produced. This is compared with estimated response in the most recent year, calculated 

using the same methodology for the actual consumption and price data for the year following the forecast 

release. In some years, some NEM regions may experience very few high price periods that breach the price 

triggers used when creating the forecast, in which case it may be impossible to estimate a median response 

that can be compared meaningfully with the forecast.  

Figure 8 Example comparison of forecast price-driven DSP response vs actual for different price triggers 

 
 

Example interpretation 

• Assessing the last year of actual response to various price levels, the median response (of the 76 

cases) for regional wholesale prices exceeding $300/MWh is 9 MW, while for the 14 pricing events 

above $7500 is 25 MW. The latter is 8 MW less than forecast, but most other price bands have a closer 

alignment, and is considered within the accuracy of the forecasting methodology.  

• The median response may not be meaningful for very small number of observations. Generally, AEMO 

will only seek to draw conclusions if the number of pricing events is above 10, which is the case across 

all pricing levels considered here. 

 

For cases with a reasonable number of price events above the threshold, AEMO will discuss the alignment 

between forecast and actuals. 

Observed DSP during observed regional maximum demand  

For the regional maximum demand days, AEMO estimates the price-driven response similarly to the above, 

though in more detail as responses by individual sites are typically examined and validated rather than 

looking at the aggregate response only. The analysis is also used to calculate DSP adjustments to historical 

demand, as discussed in Chapter 2.  

For the reliability response, AEMO currently either estimates the response – similar to the way price-driven 

response is estimated – or asks the participant controlling the program for an estimate. AEMO then discusses 

how well the observed combined DSP response aligns with the forecast DSP response for the region.  

6.2 Supply availability 

Generator supply availability is particularly important in reliability studies given it is commonly a key driver of 

unserved energy (USE) estimates. Supply forecasts are therefore assessed by the degree to which capacity 

availability estimated in the ESOO matched actual generation availability at times of highest supply scarcity 
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risk. To achieve this goal, the following method is used to compare ESOO simulations with outcomes during 

extreme temperature periods in the observed summer.  

Extreme temperature periods are likely to align closely with periods of very high demand, possible derating, 

and possible supply shortfalls. These periods allow exploration of forecast versus actual supply availability 

considering: 

• Available capacity considering de-rating. 

• Full unplanned outages. 

• Partial unplanned outages. 

The method for assessing supply forecast performance involves: 

• Selecting availability data for the 10 hottest days observed over summer per region.  

– AEMO will use PASA availability where submitted data quality is high, else will use maximum 

availability.  

– Eight intervals are chosen per day, including the time of maximum temperature and the seven 

half-hour periods that followed.  

– This selection of historical data is used to observe generator performance at times of high 

temperature. High temperature periods are very likely to be linked with periods of tight 

supply-demand balance, and also represent periods where the physical capability of generator units 

is most at risk of issues including temperature derating. 

– Units with availability below their listed seasonal availability during these periods are assumed to be 

experiencing a partial or full outage, rather than a strategic withdrawal of capacity.  

• Selecting equivalent forecast availability from ESOO simulations.  

– Simulated availability is taken from 1,000 samples of 10 random days/iterations. The availability data 

from these days is taken from the maximum temperature period and the seven half-hourly periods that 

follow (this is to match the number of hours with historical).  The 97.5th and 2.5th percentiles of the 

simulation outcomes are shown to represent the forecast band and eliminate outliers that may occur 

with very low probabilities.  

• Aggregating historical and forecast data for comparison with respect to generation fuel types and regions, 

plotting duration curves to compare the data sets. 

– Historical trends per fuel type are cleaned such that only units currently operating are considered. 

Supply availability curves are presented for all regions, split by variable renewable energy and scheduled 

generation. Where there is value in exploring specific fuel sources with material contributions to reliability risk, 

additional availability curves may be added to complement regional analysis. An example of this method is 

shown below. 
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Figure 9 Example supply availability curve – New South Wales black coal, top 10 hottest days of 2019 

 
Note. The difference between forecast and actual performance from the fleet of generators was the catalyst for a forecast improvement 

item. See the 2019 Forecast Accuracy Report for more detail. 

Example interpretation 

The grey range represents the simulated availability, while the dotted lines represent availability as 

observed. In this example, actual availability remained within or above simulated availability over the 

study period, indicating better than expected performance from the fleet of generators. This may be due 

to cooler than anticipated temperatures or lower than expected failure rates. 

 

 


