

Development of Demand Response Mechanism Baseline Consumption Methodology – Phase 2 Results Final Report

Australian Energy Market Operator Project No. 20320008 Prepared by DNV KEMA October 2013

Base	eline C	onsur	nption Methodology – Phase 2 Results	1-1				
E.	Execu	tive S	ummary	1-1				
E.1	Phase	2 An	alyses	1-2				
E.1	.1		Baseline Protocols and Adjustments	1-3				
E.1	.1.2 Performance Metrics							
E.2	Accur	acy, I	Bias and Variability Results	1-5				
E.2	.1		Accuracy	1-5				
E.2	.2		Bias	1-6				
E.2	.3		Variability	1-7				
E.3	Segme	entati	o n	1-8				
E.3	.1		Segmentation by Customer Size	1-8				
E.3	.2		Segmentation by Weather Sensitivity	1-9				
E.3	.3		Segmentation by Load Variability	1-10				
E.3	.4		Segmentation by Region	1-11				
E.3	.5		High Variable Load Customers	1-12				
E.4	Admi	nistra	iion	1-12				
E.5	Recor	nmen	dations	1-13				
Base	eline C	onsur	nption Methodology	1-16				
Mar	nageme	ent Re	port on Phase 2 Results	1-16				
1.	Introd	uction	1	1-16				
	1.1	Purp	ose	1-16				
	1.2	NEM	I System	1-16				
	1.3	Avai	lable Interval Load Data	1-18				
	1.4	Addi	tional Data Resources	1-20				
		1.4.1	30-Minute Regional System Load Data	1-20				
		1.4.2	Weather Data	1-20				
		1.4.3	Pricing Data	1-22				
		1.4.4	Holidays	1-23				
	1.5	Cand	idate Event Days	1-24				
		1.5.1	Candidate Event Half-Hours	1-24				
	1.6	Base	line Methodologies	1-25				
		1.6.1	PJM Economic Baseline	1-27				
		1.6.2	Middle 4 of 6	1-27				
		1.6.3	PJM Emergency GLD Comparable Day (non-weather sensitive) Baseline	1-27				
		1.6.4	PJM Emergency GLD Comparable Day (weather sensitive) Baseline	1-27				

		1.6.5	PJM Emergency GLD Same Day (Before/After Event) Baseline	1-28				
		1.6.6	CAISO Standard Baseline	1-28				
		1.6.7	ISONE Standard Baseline	1-28				
	1.7	Adjust	tments	1-29				
	1.8	Examp	ple Plots of Baselines	1-29				
2.	Resu	lts – Ac	curacy, Bias and Variability	2-36				
	2.1	Accura	acy	2-37				
		2.1.1	Overall	2-37				
		2.1.2	Customer Size	2-38				
		2.1.3	Weather Sensitivity	2-40				
		2.1.4	Load Variability	2-40				
		2.1.5	Geographic Region	2-41				
		2.1.6	Observations	2-42				
	2.2	Bias 2-	-42					
		2.2.1	Overall	2-43				
		2.2.2	Customer Size	2-44				
		2.2.3	Weather Sensitivity	2-45				
		2.2.4	Load Variability	2-45				
		2.2.5	Geographic Region	2-46				
		2.2.6	Observations	2-46				
	2.3	Variat	pility	2-47				
		2.3.1	Overall	2-47				
		2.3.2	Customer Size	2-48				
		2.3.3	Weather Sensitivity	2-49				
		2.3.4	Load Variability	2-50				
		2.3.5	Geographic Region	2-50				
		2.3.6	Observations	2-51				
	2.4	Additi	onal Analyses	2-51				
	2.5	High V	Variable Load Customers	2-51				
3.	Reco	mmenda	ations					
A.	Appe	endix – I	Distribution Statistics (Hours 1-5pm)					
B.	Appe	endix – I	Distribution Statistics (1PM – 7 PM)					
C.	. Appendix – Results for Highly Variable Load Customers							
D.	Appe	endix – I	Results for Customers up to 175 kW					
E.	Holi	days		3-1				
F.	Appe	endix – (Candidate Event Days					

List of Tables

Table 1 Comparison of Accuracy of Baselines	1-6
Table 2 Comparison of Bias of Baselines	1-6
Table 3 Bias Distribution: CAISO with Additive Adjustment	1-7
Table 4 Comparison of Variability of Baselines	1-7
Table 5 Accuracy of Baselines Segmented by Customer Size	1-9
Table 6 Accuracy of Baselines Segmented by Weather Sensitivity	1-10
Table 7 Accuracy of Baselines based on "Variable Load" Segmentation	1-11
Table 8 Accuracy of Baselines based on Regional Segmentation	1-12
Table 9 Summary of Results for Likely Event Weekdays, all Sizes of Customers, for All Weather	
Customers, with Non-Variable Load	1-14
Table 10 Interval Load Data Available for Analysis	1-19
Table 11 Samples Selected for Analysis	1-19
Table 12 Weather Station Mapping	1-21
Table 13 Top 20 Prices	1-22
Table 14 Holidays: Victoria	1-23
Table 15 - Baseline Methodologies Evaluated	1-26
Table 16 Comparison of Accuracy of Baselines	2-38
Table 17 Baseline Accuracy: Distribution Statistics	2-38
Table 18 Accuracy of Baselines Segmented by Customer Size	2-39
Table 19 Average Annual kWh by Customer Size Segment	2-39
Table 20 Accuracy of Baselines Segmented by Weather Sensitivity	2-40
Table 21 Accuracy of Baselines based on "Variable Load" Segmentation	2-41
Table 22 Accuracy of Baselines based on Regional Segmentation	2-42
Table 23 Comparison of Baseline Bias	2-43
Table 24 Baseline Bias: Distribution Statistics	2-44
Table 25 Baseline Bias: Segmented by Customer Size	2-44
Table 26 Baseline Bias: Weather Sensitivity	2-45
Table 27 Baseline Bias: Load Variability	2-45
Table 28 Baseline Bias: Geographic Region	2-46
Table 29 Variability of Baselines: Overall	2-47
Table 30 Variability: Overall Distribution Statistics	2-48
Table 31 Variability: Segmented by Customer Size	2-49
Table 32 Variability: Weather Sensitivity	2-49
Table 33 Variability: Load Variability	2-50
Table 34 Variability: Segmented by Region	2-50

Table 35 Distribution Statistics for Selecting Variable Load Customers	2-52
Table 36 Summary of Results for Likely Event Weekdays, all Sizes of Customers, for All Weather	
Customers, with Non-Variable Load	3-54
Table 37 Bias (Overall): Distribution Statistics	3-56
Table 38 Accuracy (Overall): Distribution Statistics	3-56
Table 39 Variability (Overall): Distribution Statistics	3-57
Table 40 Bias (175 kW to 500 kW): Distribution Statistics	3-57
Table 41 Accuracy (175 kW to 500 kW): Distribution Statistics	3-58
Table 42 Variability (175 kW to 500 kW): Distribution Statistics	3-58
Table 43 Bias (500 kW to 2,000 kW): Distribution Statistics	3-59
Table 44 Accuracy (500 kW to 2,000 kW): Distribution Statistics	3-59
Table 45 Variability (500 kW to 2,000 kW): Distribution Statistics	3-60
Table 46 Bias (2 MW to 10 MW): Distribution Statistics	3-60
Table 47 Accuracy (2 MW to 10 MW): Distribution Statistics	3-61
Table 48 Variability (2 MW to 10 MW): Distribution Statistics	3-61
Table 49 Bias (Over 10 MW): Distribution Statistics	3-62
Table 50 Accuracy (Over 10 MW): Distribution Statistics	3-62
Table 51 Variability (Over 10 MW): Distribution Statistics	3-63
Table 52 Bias (Not Weather Sensitive): Distribution Statistics	3-63
Table 53 Accuracy (Not Weather Sensitive): Distribution Statistics	3-64
Table 54 Variability (Not Weather Sensitive): Distribution Statistics	3-64
Table 55 Bias (Weather Sensitive): Distribution Statistics	3-65
Table 56 Accuracy (Weather Sensitive): Distribution Statistics	3-65
Table 57 Variability (Weather Sensitive): Distribution Statistics	3-66
Table 58 Bias (Low Load Variable Customers): Distribution Statistics	3-66
Table 59 Accuracy (Low Load Variable Customers): Distribution Statistics	3-67
Table 60 Variability (Low Load Variable Customers): Distribution Statistics	3-67
Table 61 Bias (Medium Load Variable Customers): Distribution Statistics	3-68
Table 62 Accuracy (Medium Load Variable Customers): Distribution Statistics	3-68
Table 63 Variability (Medium Load Variable Customers): Distribution Statistics	3-69
Table 64 Bias (High Load Variable Customers): Distribution Statistics	3-69
Table 65 Accuracy (High Load Variable Customers): Distribution Statistics	3-70
Table 66 Variability (High Load Variable Customers): Distribution Statistics	3-70
Table 67 Bias (Overall): Distribution Statistics 1PM-7PM	3-1
Table 68 Accuracy (Overall): Distribution Statistics 1PM-7PM	3-1
Table 69 Variability (Overall): Distribution Statistics 1PM-7PM	3-2
Table 70 Bias (175 kW to 500 kW): Distribution Statistics 1PM-7PM	3-2

Table 71 Accuracy (175 kW to 500 kW): Distribution Statistics 1PM-7PM	3-3
Table 72 Variability (175 kW to 500 kW): Distribution Statistics 1PM-7PM	3-3
Table 73 Bias (500 kW to 2,000 kW): Distribution Statistics 1PM-7PM	3-4
Table 74 Accuracy (500 kW to 2,000 kW): Distribution Statistics 1PM-7PM	3-4
Table 75 Variability (500 kW to 2,000 kW): Distribution Statistics 1PM-7PM	3-5
Table 76 Bias (2 MW to 10 MW): Distribution Statistics 1PM-7PM	3-5
Table 77 Accuracy (2 MW to 10 MW): Distribution Statistics 1PM-7PM	3-6
Table 78 Variability (2 MW to 10 MW): Distribution Statistics 1PM-7PM	3-6
Table 79 Bias (Over 10 MW): Distribution Statistics 1PM-7PM	3-7
Table 80 Accuracy (Over 10 MW): Distribution Statistics 1PM-7PM	3-7
Table 81 Variability (Over 10 MW): Distribution Statistics 1PM-7PM	3-8
Table 82 Bias (Not Weather Sensitive): Distribution Statistics 1PM-7PM	3-8
Table 83 Accuracy (Not Weather Sensitive): Distribution Statistics 1PM-7PM	3-9
Table 84 Variability (Not Weather Sensitive): Distribution Statistics 1PM-7PM	3-9
Table 85 Bias (Weather Sensitive): Distribution Statistics 1PM-7PM	3-10
Table 86 Accuracy (Weather Sensitive): Distribution Statistics 1PM-7PM	3-10
Table 87 Variability (Weather Sensitive): Distribution Statistics 1PM-7PM	3-11
Table 88 Bias (Low Load Variable Customers): Distribution Statistics 1PM-7PM	3-11
Table 89 Accuracy (Low Load Variable Customers): Distribution Statistics 1PM-7PM	3-12
Table 90 Variability (Low Load Variable Customers): Distribution Statistics 1PM-7PM	3-12
Table 91 Bias (Medium Load Variable Customers): Distribution Statistics 1PM-7PM	3-13
Table 92 Accuracy (Medium Load Variable Customers): Distribution Statistics 1PM-7PM	3-13
Table 93 Variability (Medium Load Variable Customers): Distribution Statistics 1PM-7PM	3-14
Table 94 Bias (High Load Variable Customers): Distribution Statistics 1PM-7PM	3-14
Table 95 Accuracy (High Load Variable Customers): Distribution Statistics 1PM-7PM	3-15
Table 96 Variability (High Load Variable Customers): Distribution Statistics 1PM-7PM	3-15
Table 97 Accuracy: Highly Variable Customers Overall	3-16
Table 98 Bias: Highly Variable Customers Overall	3-16
Table 99 Variability: Highly Variable Customers Overall	3-16
Table 100 Accuracy: Highly Variable Customers by Customer Size	3-17
Table 101 Bias: Highly Variable Customers by Customer Size	3-17
Table 102 Variability: Highly Variable Customers by Customer Size	3-18
Table 103 Accuracy: Highly Variable Customers by Weather Sensitivity	3-18
Table 104 Bias: Highly Variable Customers by Weather Sensitivity	3-18
Table 105 Variability: Highly Variable Customers by Weather Sensitivity	3-19
Table 106 Accuracy: Customers up to 175 kW	3-20
Table 107 Bias: Customers up to 175 kW	3-20

Table 108 Variability: Customers up to 175 kW	3-20
Table 109 Accuracy: Customers up to 175 kW by Weather Sensitivity	3-21
Table 110 Bias: Customers up to 175 kW by Weather Sensitivity	3-21
Table 111 Variability: Customers up to 175 kW by Weather Sensitivity	3-21
Table 112 Accuracy: Customers up to 175 kW by Load Variability	3-22
Table 113 Bias: Customers up to 175 kW by Load Variability	3-22
Table 114 Variability: Customers up to 175 kW by Load Variability	3-23
Table 115 Holidays: Australian Capital Territory	3-1
Table 116 Holidays: New South Wales	
Table 117 Holidays: Queensland	3-3
Table 118 Holidays: South Australia	3-4
Table 119 Holidays: Tasmania	3-5
Table 120 Holidays: Victoria	3-6
Table 121 Candidate Event Days	3-7

List of Figures

Figure 1 – AEMO Service Territory	1-17
Figure 2 – Average Weekday Load	1-18
Figure 3 – Sample EnergyPrints TM	1-18
Figure 4 – Sample System Load Data	1-20
Figure 5 – Dry Bulb Temperature Data: Canberra Airport	1-22
Figure 6 – Timing of Peak Demand	1-25
Figure 7 - Example of Unadjusted Baselines	1-30
Figure 8 - Example of Baselines with Additive Adjustment	1-31
Figure 9 - Example of Baselines with Multiplicative Adjustment	1-32
Figure 10 - Example of Baselines with Multiplicative Adjustment	1-33
Figure 11 - Example of Baselines with Capped Multiplicative Adjustment	1-34
Figure 12 - Comparison of Baselines with More vs. Less Days Included in Calculation	1-35

Demand Response Mechanism Baseline Consumption Methodology – Phase 2 Results

E. Executive Summary

In November 2012 the Australian Energy Market Commission (AEMC) released its final report for the Power of Choice Review¹. This report set out recommendations for market conditions that facilitate Demand Side participation. One of the recommendations was to have the Australian Energy Market Operator (AEMO) develop a rule change proposal establishing a new Demand Response Mechanism (DRM). This would allow consumers (or third parties acting on behalf of consumers) to directly participate in the wholesale market.

In January 2013 the Standing Council on Energy and Resources (SCER) requested the AEMO to lead the development of this DRM. To assist in this work the AEMO commissioned DNV KEMA to provide advice on the construct and concepts surrounding the development and implementation of a baseline consumption methodology for the implementation of the DRM in the National Electricity Market (NEM). The purpose of the study is to provide AEMO with technical advice regarding the following:

- How has DRM and baseline consumption methodology been <u>implemented</u> in other electricity markets;
- Identify components of DRM and baseline consumption methodology that <u>perform well</u> and those that <u>need improvement</u> in other electricity markets;
- What <u>lessons can be learnt</u> to advise AEMO on the development of the baseline consumption methodology for the DRM implementation in the NEM; and
- <u>Test the efficacy</u> of potential baseline consumption methodology options using customer data provided by NEM.

The study was conducted in two phases. Phase 1 included research into the baseline methodologies in use at the various United States (US) Independent System Operators (ISOs). A Phase 1 report was completed in July 2013 and entitled "Development of Demand Response Mechanism – Baseline Consumption Methodology Phase 1 Results".

This report presents the Phase 2 findings which involved the testing of the efficacy of potential baseline consumption methodologies and to consider how some of these baselines perform with data from

¹¹ AEMC 2012, Power of Choice Review – giving consumer options in the way they use electricity, Final Report, 30 November 2012, Sydney

Australian customers. The Phase 2 analysis was designed to examine the issues surrounding the development of accurate baselines. Specifically, the objectives of the project were to:

- 1. Determine the accuracy and bias of a variety of CBL methods;
- 2. Determine the feasibility of administering each CBL method for all market participants under consideration; and
- 3. Attempt to develop objective criteria to associate a customer load with a specific CBL method if this will result in significantly improved accuracy, less bias and less variability.

The remainder of this report focuses on the Phase 2 analyses.

E.1 Phase 2 Analyses

The Phase 2 analyses used a very large, robust sample of likely program participants, over a multiple year frame. The project team tested a broad range of representative baselines and commonly accepted adjustment approaches using multiple metrics to define the baselines' efficacy.

The analysis:

- Was based on data requested from across the NEM representing each State. In total, data for 10,000 likely participants were provided for analysis with a minimum consumption threshold set at 100 MWh per annum.
- Focused on a large random sample of approximately 2,500 customers² selected from the original data transfer.
- Included half hourly load data from July 1, 2011 through June 30, 2013.
- Featured a total of nine baselines, with up to four variants of each baseline for a total of 36 different CBL and adjustment methods analysed. The variants represent common adjustments to the baseline approaches.
- Examined the baselines performance on 83 candidate event days (62 weekdays and 21 weekend days) that were defined based on regional load characteristics, weather and pricing.
- Used three metrics to establish the baselines' statistical properties. These metrics measured each baseline's accuracy, variability and bias.

 $^{^2}$ The sample was selected to reduce the processing time for the computer simulations. Based on discussions with AEMO staff, the project team drew the sample for customers with a 2012 maximum demand greater than 175 kW. Following a preliminary review, the project team conducted additional analysis on the 2,469 customers excluded from the original sample draw to ensure the results were robust regardless of customer size.

• Resulted in calculating more than 120 million estimated baselines (customers * baselines * days).

E.1.1 Baseline Protocols and Adjustments

The analysis featured a total of nine baselines, with up to four variants of each baseline. The variants represent the unadjusted baseline and three common, same day, adjustments to the baseline including an additive adjustment, a multiplicative adjustment, and a multiplicative capped adjustment. Accordingly, there were 36 different baseline/variants combinations included in the analysis. The nine baselines included in the analysis are:

- 1. PJM Economic;
- 2. Middle 4 of 6 Preceding Like Days (Tested for PJM);
- 3. PJM Emergency Comparable Day, Non-weather Sensitive;
- 4. PJM Emergency Same Day;
- 5. PJM Emergency Comparable Day, Weather Sensitive;
- 6. ISO New England ("ISONE") Standard;
- 7. California ISO ("CAISO") Standard;
- 8. Weekend Middle 2 of 4; and
- 9. Weekend PJM Economic.

Please note, regression based baselines were excluded from the analysis due to the following factors:

- More difficult to implement and administer;
- More challenging to explain to participants;
- Have been found in other analyses to not outperform the more common baselines tested.

E.1.2 Performance Metrics

Three statistics were chosen to measure the three quantitative aspects of baseline performance:

- 1. Accuracy,
- 2. Bias, and
- 3. Variability.

Accuracy

The attribute given the most emphasis in the analysis was **accuracy**, or how closely a baseline method predicts customers' actual loads in the sample. The statistic chosen to measure accuracy was the baseline's relative root mean squared error (RRMSE). This statistic expresses the baseline's average half

hourly accuracy as a fraction of average hourly load. An RRMSE for an individual customer of 0.1, for example, means that the customer's estimated baseline is typically³ within 10 percent of the actual load. For a given customer, some hours will have a higher difference and some smaller. For a group of customers, a median RRMSE of 0.1 means that for the typical customer the estimated baseline is typically within 10 percent of the average load. Since not all customers are typical, some will have a higher typical difference, and some smaller.⁴

The RRMSE is based on squared prediction errors. This technique in essence weights large errors much more heavily than small or midsized errors. In contrast, the errors are weighted evenly with a technique that measures errors based on the absolute values of the prediction errors. This means that the effect of large half hourly errors in the predicted load will result in a higher RRMSE as opposed to a mean absolute percentage error (MAPE).

Bias

The second baseline attribute analysed was **bias**, or the systematic tendency of a baseline method to overor under-predict actual loads. Bias was measured using the baseline's average relative error (ARE). This statistic, for a given customer, is the average half hourly baseline less the average half hourly actual load, expressed as a fraction of actual half hourly load. A median ARE value of zero would indicate that the typical customer in our sample had no systematic tendency to over- or under-predict loads using that baseline, whereas a positive value would indicate a tendency to over predict and a negative value having the tendency to under predict loads. The closer ARE is to zero, the closer the baseline is to being unbiased.

Variability

The third baseline attribute analysed was **variability**, or how well the baseline does at predicting half hourly load under many different conditions and across many different customers. For example, two baselines may have the same RRMSE but one baseline may be able to better estimate half hourly load across a wider variety of situations such that the dispersion of errors is much closer to actual load than the other baseline. In other words, one baseline may estimate the load shapes more closely than the other baseline. The variability measurement chosen was the relative error ratio (RER), which is the standard deviation of the baseline's prediction errors expressed as a fraction of average load. The smaller the median RER, the less variable a baseline's error is for the typical customer and therefore the better the baseline performs across a wide variety of circumstances.

 $^{^{3}}$ In this context, typically means on the order of 2/3 of the time.

⁴ The RRMSE combines the systematic errors measured by the ARE (bias) and the variability of errors captured by the RER (variability). For this reason, the overall accuracy measure was given primary emphasis in the study.

It should be noted that the accuracy, bias and variability were all calculated for the 10th percentile, median, mean and 90th percentile for each baseline method within each segment. This allows for a detailed analysis of the different baselines across a wide variety of circumstances to get a thorough understanding of how well each baseline estimates a customer actual half hourly load. The 10th percentile in effect illustrates an expected "top" case performance scenario while the 90th percentile illustrates a "bottom" case performance scenario so an analyst can understand the range of expected outcomes for the various metrics.

As an example, based on one of the top performing baselines in this analysis (CAISO 10 of 10 with an additive adjustment) we find:

- Accuracy represented by median RRMSE is 0.10
 - o 10th percentile Accuracy is 0.05
 - 90th percentile is 0.22
- Variability represented by RER is 0.10
- Bias represented as ARE is 0

Simply put, one can expect the baseline to predict the typical customer's half hourly load within $\pm 10\%$ of their actual load most of the time, while accurately estimating the load shape over time with no tendency to over or underestimate. For 1 in 10 customers this estimate will be much better, typically within $\pm 5\%$ of actual half hourly load, while for 9 of 10 customers the prediction will typically be no worse than $\pm 22\%$ of the actual load.

E.2 Accuracy, Bias and Variability Results

The following sections present baseline performance results for the trimmed data set that excludes customers with a maximum demand below 175 kW and "highly variable" customers⁵.

E.2.1 Accuracy

A comparison of the accuracy metric among the baselines tested is presented in Table 1. The results are sample medians of each metric, and are colour coded for ordering. Across all baselines and adjustments, the baseline with the smaller number or "greener" colour can be considered better than baselines with

⁵ For this analysis, highly variable customers were defined as those customers with a variability index above the 85th percentile, (i.e., removing the top 15% highly variable customers). For determining highly variable load customers we first removed the variability due to weather and then calculated Theil's U-statistic which is the relative root mean squared error (RRMSE). A Thiel's U value greater than 0.40 was used as the cut point and was chosen to ensure the AEMO results were consistent with an earlier PJM examination. For PJM, this value represented the top 20 percent of highly variable customers.

higher numbers or "redder" colours. The values in the table are rounded, so the underlying data may produce slightly different shades for values that appear to be the same.

Baseline Type	PIMH4 OF	Middle 4 oc.	PJM Comp.	PIN Same C	PIM Weath	Isone usens	C4150 10 of 10	Weetends Weetends	Weekend L.	
Unadjusted Baseline	0.143	0.151	0.146	0.141	0.142	0.149	0.151	0.187	0.197	
Additive Adjustment	0.107	0.108	0.127	0.142	0.123	0.101	0.103	0.136	0.141	
Multiplicative Adjustment	0.109	0.110	0.132	0.142	0.127	0.102	0.103	0.137	0.139	
Multiplicative Adjustment (Cap)	0.111	0.114	0.135	0.143	0.126	0.106	0.109	0.143	0.145	

Table 1 Comparison of Accuracy of Baselines⁶

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

The comparison in the table highlights the superiority of baselines with same day, load-based adjustments. Across a range of different baselines, both the additive and multiplicative adjustments provide a significant improvement to the accuracy of the underlying baseline and therefore represent the best performance. The performance difference from the use of an additive adjustment when compared to a multiplicative adjustment is insignificant. The CAISO and ISONE baselines had slightly better, although relatively insignificant, empirical performance relative to the other X of Y type baselines (such as the PJM 4 of 5 or PJM 4 of 6). This is based purely on the empirical performance and does not consider the feasibility and administration involved or other factors that might go into the selection of a final baseline.

E.2.2 Bias

The baselines highlighted above also perform well with respect to bias as shown in Table 2.

Baseline Type	P.III HA OF C	l'Nidale 4 oc.	P.IM COMD.	Veu Same C	PIN Weath	^{LS} ONE	Calso JOOS	Weeker 140	Weekend had	Weekend L.	£ 40 21.
Unadjusted Baseline	0.003	0.030	0.013	0.055	0.004	0.039	0.034	s	0.027	0.025	
Additive Adjustment	0.008	0.000	0.003	0.013	0.004	0.000	0.000	Pa a	0.000	0.008	
Multiplicative Adjustment	0.009	0.001	0.007	0.013	0.007	0.001	0.001	-sek	0.002	0.012	
Multiplicative Adjustment (Cap)	0.005	0.007	0.003	0.036	0.001	0.006	0.007	š	0.011	0.014	

 Table 2 Comparison of Bias of Baselines⁷

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

⁶ Note that each table presented uses a colour coding scale relative to the results contained within the weekday and weekend results of each table. The colour coding scale is not consistent among all tables in the report given that results are meant to be colour coded to show relative performance within each table's results.

⁷ Note the bias statistics are presented in absolute terms for comparison purposes.

The level of bias was non-existent or extremely small, i.e., less than 1%, for all CBLs with the additive and multiplicative adjustments. Unadjusted baselines appeared to be more susceptible to bias, for example the PJM Same Day, which resulted in a 5.5% bias for the typical customer. A 1% positive bias indicates that the CBL will be estimated 1% too high for the typical customer during a likely summer event day. Examining the distribution of the statistic for the entire sample of customers provides an indication of the veracity of the estimate. Table 3 presents the distribution of bias for the CAISO additive adjustment. A full 80% of the customer data (10th to 90th percentile) ranged between an under estimation of 1.7% (-0.0170) to an over estimation of 1.7% (0.0172). Several baselines, including the CAISO 10 of 10 with the additive adjustment) were found to be unbiased for the typical customer as represented by a zero value in Table 2.

	CAISO
Statistic	(10 of 10)
count	2117
10 th Percentile	-0.0170
Median	0.0000
Mean	-0.0004
90 th Percentile	0.0172

E.2.3 Variability

Table 4 presents the overall comparison of the variability metric among the baselines. Similar to the discussion represented above for accuracy, the use of a multiplicative or additive adjustment provide a significant reduction in the variability of the CBL performance which make it a better estimator. Again, the X of Y approaches are all comparable, with the CAISO and ISONE performing slightly better.

Baseline Type	PIII H4 OF	Middle 4 no.	PIN COMD.	Ven-	Len Meant	ISONE USENS	Calso 10 CC	Week 3120	Weekend A.	Weekend L.	
Unadjusted Baseline	0.142	0.146	0.144	0.102	0.141	0.140	0.144	s	0.182	0.191	
Additive Adjustment	0.106	0.107	0.126	0.120	0.122	0.101	0.103	enc	0.133	0.139	
Multiplicative Adjustment	0.108	0.109	0.131	0.120	0.127	0.100	0.102	le k	0.136	0.137	
Multiplicative Adjustment (Cap)	0.110	0.113	0.135	0.115	0.125	0.104	0.107	Š	0.140	0.143	

Table 4 Comparison of Variability of Baselines

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

E.3 Segmentation

One of the goals of the evaluation was to determine whether or not customers should be segmented and then aligned to different CBLs in order to achieve more accurate results. Our criterion for choosing which segments to consider was that the segments should be sufficiently transparent that the market would readily understand which CBL goes with what type of customer.

The following customer segments were chosen to be evaluated as part of the analysis:

- Size of customer, based on demand⁸;
- Customers with weather sensitive load versus customers with non-weather sensitive load;
- Customers with variable load versus customers with non-variable load; and
- Regional location, i.e., North versus South.

E.3.1 Segmentation by Customer Size

Table 5 presents a summary of the "Accuracy" statistic based on customer size as measured by the 2012 maximum demand of the customer. Examination of the table indicates that the same baseline strategies perform consistently across all size categories. The X of Y, ISONE, and CAISO baselines all perform similarly as long as an adjustment is allowed. On the weekends, the weekend 2 of 4 seems to perform best. Given these results, there is no apparent reason to segment by size.

⁸ For this analysis, the customers excluded earlier based on magnitude of 2012 maximum demand were included as a separate size category.

Size Category	Baseline Type	PINH Ha OF S	Middle 4 of 6	P.IN Comp Day	PINSame Day	P.In WeathSens	¹⁵ ONE	C4150 10 04 10	We	Weekends Dreekend M2 Of 4	Weekend H2 of 3	
	Unadjusted Baseline	0.134	0.138	0.127	0.124	0.135	0.136	0.136	ds	0.162	0.162	
Up to 175	Additive Adjustment	0.110	0.109	0.130	0.147	0.129	0.103	0.105	ê	0.128	0.132	
(n=2.184)	Multiplicative Adjustment	0.113	0.113	0.135	0.147	0.135	0.105	0.107	eel	0.134	0.137	
(Multiplicative Adjustment (Cap)	0.112	0.112	0.129	0.142	0.130	0.105	0.107	≥	0.130	0.134	
	Unadjusted Baseline	0.145	0.151	0.146	0.137	0.137	0.149	0.150	с,	0.189	0.198	
175 kW to	Additive Adjustment	0.109	0.109	0.128	0.144	0.122	0.103	0.105	e	0.140	0.146	
(n=1 355)	Multiplicative Adjustment	0.111	0.112	0.134	0.144	0.127	0.103	0.105	eel	0.141	0.144	
(1)000)	Multiplicative Adjustment (Cap)	0.112	0.114	0.135	0.147	0.124	0.106	0.109	≥	0.145	0.149	
	Unadjusted Baseline	0.141	0.147	0.144	0.160	0.144	0.143	0.147	с,	0.184	0.199	
500 to	Additive Adjustment	0.103	0.104	0.122	0.135	0.123	0.098	0.099	ê	0.132	0.140	
2,000 KW (n=471)	Multiplicative Adjustment	0.104	0.104	0.128	0.135	0.126	0.097	0.098	eel	0.135	0.138	
(Multiplicative Adjustment (Cap)	0.106	0.110	0.133	0.140	0.126	0.101	0.103	≥	0.141	0.148	
	Unadjusted Baseline	0.138	0.147	0.144	0.126	0.170	0.148	0.152	ds	0.176	0.184	
2,000 to	Additive Adjustment	0.096	0.101	0.119	0.118	0.116	0.094	0.094	en e	0.106	0.116	
(n=141)	Multiplicative Adjustment	0.099	0.098	0.128	0.118	0.125	0.093	0.093	eel	0.112	0.118	
(11-141)	Multiplicative Adjustment (Cap)	0.109	0.115	0.131	0.123	0.144	0.100	0.108	≥	0.133	0.134	
	Unadjusted Baseline	0.192	0.197	0.196	0.105	0.251	0.198	0.200	ъ	0.179	0.176	
Over 10,000 kW (n=50)	Additive Adjustment	0.133	0.137	0.159	0.147	0.178	0.123	0.127	é	0.110	0.109	
	Multiplicative Adjustment	0.134	0.140	0.165	0.147	0.195	0.124	0.130	eek	0.111	0.108	
(Multiplicative Adjustment (Cap)	0.146	0.148	0.161	0.140	0.222	0.141	0.142	≥	0.137	0.117	

Table 5 Accuracy of Baselines Segmented by Customer Size

Color coded, green = good, rank over rows within size category. Weekend baselines are color coded independently.

The size segmentation shows that baselines for smaller and very large accounts are slightly less accurate. This is likely due to the greater diversity of business types in the smaller account segments. Other than this observation, the segmentation by size provides little additional perspective on the choice of optimal baseline.

E.3.2 Segmentation by Weather Sensitivity

Table 6 presents the overall results after segmenting by weather sensitive load. Examining Table 6 indicates that the same four baselines, i.e., the two X of Y type baselines, ISONE and CAISO with same day load-based adjustments are equally effective across non-weather and weather sensitive segmentations. Our conclusion is that there is no need to segment based on weather sensitivity because the use of a same day adjustment improves both the non-weather sensitive and weather sensitive segments.

Weather Sensitive	Baseline Type	PINH4 OF C	Middle 4 06.	P.IM.Comb.C	PINSame D	Vec Nec	SUBC:	Caliso 10 of 10	Week 20	Weetends Weetendhas	Weekend H2	z or 3
Not	Unadjusted Baseline	0.097	0.100	0.099	0.100	0.115	0.099	0.099	<u>ب</u>	0.116	0.114	
Weather	Additive Adjustment	0.086	0.085	0.102	0.108	0.105	0.081	0.082	ĕ	0.100	0.104	
Consitivo	Multiplicative Adjustment	0.087	0.088	0.106	0.108	0.108	0.082	0.084	ž	0.103	0.105	
Sensitive	Multiplicative Adjustment (Cap)	0.087	0.087	0.101	0.108	0.108	0.082	0.083	š	0.101	0.106	
Weather Sensitive	Unadjusted Baseline	0.171	0.177	0.163	0.148	0.153	0.175	0.176	ş	0.213	0.209	
	Additive Adjustment	0.136	0.137	0.159	0.189	0.151	0.127	0.130	enc	0.160	0.163	
	Multiplicative Adjustment	0.141	0.142	0.168	0.189	0.161	0.130	0.132	š	0.171	0.168	
	Multiplicative Adjustment (Cap)	0.137	0.140	0.155	0.178	0.151	0.130	0.133	š	0.168	0.165	

Table 6 Accuracy of Baselines Segmented by Weather Sensitivity

Color coded, green = good, rows are ranked within each category. Weekend baselines are color coded independently.

A common structure of DR programs stipulates an unadjusted baseline for all accounts with an option for a same-day, load-based adjustment for accounts that are weather sensitive. This assumes that the non-weather sensitive accounts do not materially improve with the same-day adjustment. Our analysis seems to indicate that there is sufficient improvement in accuracy to warrant a same day adjustment even for the non-weather sensitive accounts. While it is true that the same-day, load-based adjustment does not improve the accuracy for non-weather sensitive accounts to quite the same degree, there is still an improvement of 10 to 20 percent. A decision to forgo the load-based adjustment should be based on other considerations, such as administrative costs and/or non-typical event day behaviour (e.g.: pre-cooling).

E.3.3 Segmentation by Load Variability

Table 7 presents the accuracy of the baseline approaches based on a segmentation based on non-weather related load variability. Clearly these results indicate that the accuracy of the baseline erodes with increased load variability. The accuracy is exceptional for loads displaying low levels of variability. For the interquartile range of customers, i.e., variability category medium, the accuracy doubles but is still a very reasonable ± 11 to $\pm 12\%$. However, the "high" variable load category shows accuracy values that range above $\pm 20\%$. It is important to note that these results are calculated after removing the most variable customers, i.e., the top 15% of the variable load customers. Whenever a customer's load is uncorrelated with any identifiable previous load pattern, no generalized baseline methodology can produce a consistent, effective baseline.

Variability Category	Baseline Type	PIN Ha OF C	Middle 4 of	PIN COMD.	Veu Same C	PIN Weath	ISONE	Calso Joor	07.	Weekends Weekend we	W _{eelend} H ₂	5 JO 2
	Unadjusted Baseline	0.090	0.093	0.093	0.078	0.081	0.094	0.094	ŝ	0.119	0.113	
Low	Additive Adjustment	0.068	0.069	0.082	0.088	0.074	0.064	0.066	én	0.081	0.083	
(n=624)	Multiplicative Adjustment	0.070	0.070	0.085	0.088	0.076	0.065	0.067	e	0.084	0.085	
	Multiplicative Adjustment (Cap)	0.069	0.070	0.088	0.091	0.075	0.065	0.066	≥	0.082	0.084	
	Unadjusted Baseline	0.162	0.170	0.163	0.159	0.165	0.167	0.169	ъ	0.213	0.219	
Med	Additive Adjustment	0.123	0.125	0.144	0.160	0.140	0.116	0.118	e D	0.152	0.158	
(n=1,250)	Multiplicative Adjustment	0.125	0.127	0.148	0.160	0.147	0.116	0.118	ee	0.154	0.158	
	Multiplicative Adjustment (Cap)	0.127	0.131	0.150	0.157	0.147	0.120	0.124	≥	0.160	0.164	
High (n=243)	Unadjusted Baseline	0.289	0.304	0.292	0.241	0.421	0.305	0.311	ъ	0.379	0.402	
	Additive Adjustment	0.231	0.233	0.281	0.303	0.294	0.222	0.224	en	0.311	0.327	
	Multiplicative Adjustment	0.232	0.240	0.301	0.303	0.321	0.219	0.226	ee	0.317	0.324	
	Multiplicative Adjustment (Cap)	0.249	0.267	0.281	0.258	0.360	0.244	0.263	3	0.333	0.343	

Table 7 Accuracy of Baselines based on "Variable Load" Segmentation

Color coded, green = good, rank rows within category. Weekend baselines are color coded independently.

Other ISOs in the US are struggling with this same issue, i.e., baseline approaches considered in this analysis may not be applicable for customers with certain kinds of highly variable loads. The project team has had additional discussions with PJM regarding actions they are taking with regard to high variable load customers. PJM defines a high variable load customer as someone with an RRMSE greater than 20% during 60 simulated event periods⁹. PJM has used what they consider a rather simple, conservative load estimate by calculating the average minimum load during the event window for the five days prior to the actual event (Maximum Base Load approach). They also offer the use an approach called the "Same Day (3+2)" approach. This approach averages the three hours before the event starts (after skipping the first hour before the event) and the two hours after an event stops (after skipping the first hour after the event). An additional "Match Day (3 Day Average)" approach is available that look at matching non-event hours. The "Match Day" approach reaches back 45-60 days prior to the event. Clearly, what to do with high variable load customers continues to be a challenge.

E.3.4 Segmentation by Region

Table 8 presents the accuracy of the baseline approaches based on a segmentation based on geographic region. For this analysis, the Queensland area was defined as Region 1=North and all other areas were grouped together and defined as Region 2=South. While the accuracy is somewhat better, \pm 9% compared to \pm 11% for the North region, the "best" baselines are consistent between the two regions. There seems to be no discernible benefit for selecting different baselines for the different regions.

⁹ PJM Manual 11: Energy & Ancillary Services Market Operations, Revision 62, August 30, 2013

Region	Baseline Type	PIN Ha OFE	^{Intiddle 4} of	PIN COMD.	PINSame C	Ver Neath	SOWE	Calso ID of	Weeken 10	Weekend Mrs	Weekendh2 ₀₆	
1=North	Unadjusted Baseline	0.122	0.128	0.127	0.138	0.120	0.128	0.130	ş	0.185	0.199	
1=North	Additive Adjustment	0.091	0.091	0.111	0.119	0.107	0.085	0.087	ê	0.133	0.139	
1=North	Multiplicative Adjustment	0.092	0.093	0.115	0.119	0.111	0.086	0.088	ee	0.137	0.137	
1=North	Multiplicative Adjustment (Cap)	0.095	0.095	0.124	0.131	0.111	0.088	0.092	≥	0.143	0.143	
2=South	Unadjusted Baseline	0.158	0.164	0.154	0.143	0.154	0.161	0.163	ъ	0.188	0.195	
2=South	Additive Adjustment	0.118	0.118	0.139	0.154	0.133	0.111	0.113	(en	0.138	0.143	
2=South	Multiplicative Adjustment	0.119	0.120	0.144	0.154	0.136	0.110	0.112	ee	0.138	0.140	
2=South	Multiplicative Adjustment (Cap)	0.120	0.124	0.142	0.151	0.136	0.113	0.117	≥	0.143	0.147	

Table 8 Accuracy of Baselines based on Regional Segmentation

Color coded, green = good, rank over all rows within Region. Weekend baselines are color coded independently.

E.3.5 High Variable Load Customers

In the analyses the project team noted that high variable load customers did not perform particularly well. This result is consistent with work completed for PJM¹⁰. In PJM, high variable load customers are identified based on their relative root mean square error (RRMSE) during the targeted event period looking back 60 days¹¹. If the customer has an RRMSE greater than 20% (i.e., 0.20) then the customers are labelled as "high variable load" customers and handled separately. We conducted a similar analysis on the full sample of customers using the CAISO, PJM Economic, and Middle 4 of 6 baseline methods (given these are top-performing baselines). All three baselines display similar characteristics and would identify (and exclude) approximately the top 25% as high variable load customers.

E.4 Administration

The ultimate results and conclusions are based on the baselines' empirical performance as well as the estimated cost, across all market participants, to administer the baselines. Market participants must be cognizant of the cost and complexity of administering one or more selected CBLs.

Administrative costs and the associated level of investment in activities such as data transfer, data quality review, analysis, training, and IT systems requirements need to be considered for a simple baseline, a baseline of medium complexity, and a complex baseline methodology. Results consistent with earlier work indicate that the annual total cost to administer a complex baseline methodology is more than three times as much as a simple baseline methodology¹². For market participants the baseline operational feasibility is an important factor when determining the CBL to be utilized. As represented in the

¹⁰ PJM Empirical Analysis of Demand Response Baseline Methods, KEMA April 20, 2011

¹¹ PJM Manual 11: Energy & Ancillary Services Market Operations, Revision 62, August 30, 2013

¹² PJM Empirical Analysis of Demand Response Baseline Methods, KEMA April 20, 2011

empirical analysis above, many of the CBLs with an additive or multiplicative adjustment have very similar results. In these instances, the administrative costs become a significant factor in determining which CBL to choose.

E.5 Recommendations

This selection summarizes the recommendations of the project team. Selection of an appropriate CBL must consider the results of the empirical analysis, the expected administrative costs, and any other known issues based on the previous practical experience of other ISOs.

- Utilizing an additive adjustment is recommended. The analysis clearly indicates that a same day additive or multiplicative adjustment has superior performance to an unadjusted CBL or a CBL using the PJM weather sensitive adjustment. The decision of whether to use a multiplicative or additive adjustment is fairly arbitrary because the impact on the performance metrics is not significant. However, due to a somewhat greater susceptibility of multiplicative adjustments to gross inaccuracies under certain demand conditions, we recommend that an additive adjustment be utilized.
- **Highly variable load customers should be segmented for purposes of applying a different CBL.** The ISONE and the X of Y CBLs (i.e., CAISO, PJM economic and mid 4 of 6) with a same day additive adjustment have similar results and performed well across all segments, time periods and weather conditions, except for predicting loads for highly variable load customers. It is therefore recommended that variable load customers be segmented for the purposes of applying a different CBL and/or market rule. Here again, some guidance can be gained from PJM and their "simplified" approach of using a "maximum base load" method, i.e., the average minimum load during the event window for the previous five weekdays.
- Administrative and other factors are important considerations in the final determination of a CBL or CBLs. Since the empirical results for non-variable load customers are similar, it is important to understand the administrative cost and other factors in the final decision. Table 9 presents a comparison of the four approaches.
- The ISONE CBL, has slightly better empirical performance than the other methods, however, it entails significantly more administrative costs. The higher administrative costs are driven from the requirement of contiguous load data (since each baseline is based on the prior day's baseline). This approach also requires additional administration to ensure transparency to all market participants, and requires significantly more administration for settlement adjustments that result in corrections in load data. Since the empirical performance of the ISONE baseline is only marginally better than that of the remaining two, it is not apparent that this additional administrative effort is warranted and therefore is not recommended.

Table 9 Summary of Results for Likely Event Weekdays, all Sizes of Customers, for All Weather Customers, with Non-Variable Load

Baseline	Accuracy	Bias	Variability	Administration	Strategic behaviour
ISONE w/additive adjustment	10%	0%	10%	Requires continuous meter data, difficult to make calculation transparent, admin for adjustments	Impact of pre-cooling ¹³
CAISO w/additive adjustment	10%	0%	10%	Requires 10 non-event days	Impact of pre-cooling
PJM economic w/additive adjustment	11%	1%	11%	Requires limited load data based on specific reductions (5 non-event days, will use 4 if necessary) Currently implemented & minimum changes	Impact of pre-cooling Specific limit on how far to go back for CBL days (avoid issue with frequent settlements forcing outdate CBL days)
Middle 4 of 6 w/additive adjustment	11%	0%	11%	Requires 6 days (assumes same rules used for PJM economic CBL will be used)	Impact of pre-cooling Specific limit on how far to go back for CBL days (avoid issue with frequent settlements forcing outdated CBL days)

- The remaining three CBLs, the PJM economic, the middle 4 of 6, and the CAISO are reasonably similar in terms of empirical performance and ease of administration. We should note that the CAISO approach requires nearly twice the load data to provide similar results to the remaining two. Also, the true impact of customers that have frequent DR events has not been considered in this analysis. This issue may have a bigger impact on the CAISO baseline since it requires more days to be selected (as more event days occur, more days closer to the event are skipped which results in the use of days further from the event day). Therefore we would recommend consideration be given to one of the two remaining PJM identified approaches.
- We recommend implementing DRM using two baseline methodologies to start. Since AEMO is just launching their demand response market, the project team believes that it is appropriate to start simple and gain some practical experience before opening up the market to a wider array of baseline offerings. Therefore, we are recommending starting with a single weekday baseline and a single weekend baseline (both using the additive adjustment). There are three viable candidates for the weekday baseline, i.e., CAISO, PJM (M4of6) and PJM (H4of5). For the weekend, we recommend the M2of4.
- If multiple baselines are used, then demand response aggregators (DRAs) should be allowed to select the baseline. If AEMO wants to offer more than one baseline, then the experience in other regions that allows the DRA to choose seems to work well and it does not create undue or inappropriate results. It is worth noting that selecting a better performing baseline does not, in and of itself, suggest a gamed result. It may well be the case that the lower performing baseline is

¹³ Customer would need to significantly increase load for 3 hours, 4 hour prior to event, only on event days, to have impact.

unduly depressing the value of the resource because of some inherent load character. Further, where gaming has occurred through the use of unique bidding strategies, for instance, other market monitoring oversight is able to address the issues. Thus, given the costs associated with creating infrastructure and capabilities that would be new to AEMO and otherwise unnecessary in order to assign baselines to specific loads on a case by case basis, allowing DRAs to select the baseline is a reasonable and cost effective approach when combined with overall market monitoring for inappropriate behaviour.

- We support the use of unscheduled DRM in NEM. As indicated in the previous table, precooling, while justified operationally, can cause an artificially higher baseline than normal when an adjusted CBL scenario is employed. The use of unscheduled demand response in NEM will help mitigate this concern.
- Scalability of systems and processes related to the administration of the CBLs should be considered. Other ISOs have used simple approaches including spreadsheet based solutions for their pilots and/or early implementations. Key needs as volume grows are robust databases to capture bidding¹⁴ and validation data and some automatic or semi-automatic system for processing the data through the baselines.
- Strategic behaviour in the market to artificially inflate the CBL should not be permitted. Any CBL can be manipulated to the market participant's economic advantage, and it is recommended that rules be established to identify and mitigate this behaviour. The opportunity to conduct this activity increases when the reduction event is announced well in advance of the start of the event; there is no ongoing oversight to identify and review activity; and the market participants can determine exactly when they need to respond.

¹⁴ AEMO does not anticipate allowing bidding into the DRM initially.

Demand Response Mechanism Baseline Consumption Methodology

Management Report on Phase 2 Results

1. Introduction

1.1 Purpose

The Australian Energy Market Operator (AEMO) hired DNV KEMA to provide advice on the construct and concepts surrounding the development and implementation of a baseline consumption methodology for the implementation of the Demand Response Mechanism (DRM) in the National Electricity Market (NEM). The purpose of this study is to provide AEMO with technical advice regarding the following:

- How has DRM and baseline consumption methodology been <u>implemented</u> in other electricity markets;
- Identify components of DRM and baseline consumption methodology that <u>perform well</u> and those that <u>need improvement</u> in other electricity markets;
- What <u>lessons can be learnt</u> to advise AEMO on the development of the baseline consumption methodology for the DRM implementation in the NEM; and
- <u>Test the efficacy</u> of potential baseline consumption methodology options using customer data provided by NEM.

The study was conducted in two phases. Phase 1 included research into the baseline methodologies in use at the various United States (US) Independent System Operators (ISOs). A Phase 1 report was completed in July 2013 and is entitled "Development of Demand Response Mechanism – Baseline Consumption Methodology Phase 1 Results". This report presents the Phase 2 findings which involved testing the efficacy of potential baseline consumption methodologies on a large sample of loads selected from across the NEM footprint.

1.2 NEM System

Figure 1 presents a map of the regional boundaries for the NEM along with the aggregate system load from July 1, 2011 through June 30, 2013. The territory spans the eastern part of the continent from Queensland in the North to Tasmania in the South. The system peak in this time period was in January 2013 at a maximum demand over 63,000 MW. There are six regions represented including:

- Australian Capital Territory,
- New South Wales,

- Queensland,
- South Australia,
- Victoria, and
- Tasmania

The system load is shown as a classic, two-dimensional graph with demand on the y-axis and $\frac{1}{2}$ hour on the x-axis. In addition, we have presented an EnergyPrintTM that presents the time on the y-axis, the day of year on the x-axis and the magnitude of demand in a colour gradient with low levels of demand in the blue to black spectrum and high levels of load in the yellow-white spectrum.

Figure 1 – AEMO Service Territory

Figure 2 presents the peak load profiles for July 2012 and January 2013. The July profile is bi-modal with a slightly higher evening peak and the January profile is uni-modal with a late afternoon peak.

NEM Peak Loads

Figure 2 – Weekday Peak Load

1.3 Available Interval Load Data

For Phase 2, DNV KEMA was provided 30-minute interval load data for 10,000 potential demand response resources from across the NEM service territory. The data were provided for the period July 1, 2011 through June 30, 2013. Figure 3 presents' three sample profiles as EnergyPrintsTM for the full two-year period. The 30-minute customer load data were found to be of extremely high quality.

Figure 3 – Sample EnergyPrintsTM

The data provided spanned all regions and a breakdown of the interval load data by location is provided in Table 10. As evidenced by the table, the majority of resources were available in the New South Wales and Queensland area.

		Total Annual
Location	Accounts	Use (kWh)
Australian Capital Territory	340	779,438,868
New South Wales	3,543	16,727,180,576
Queensland	3,133	12,645,039,953
South Australia	535	1,763,980,930
Tasmania	342	5,499,771,112
Victoria	2,107	5,431,603,638
Totals	10,000	42,847,015,077

Table 10 Interval Load Data Available for Analysis

Discussions with AEMO indicated that customers that were less than 200 kW would have a difficult time justifying participation in the demand response market. Therefore, the project team applied a screen¹⁵ requiring the customer to have a maximum demand of at least 175 kW during 2012. This screened reduced the full data set by an additional 2,469 customers. The 2,469 customers with a maximum demand less than 175 kW represented just 2.5% of the total energy associated with the original pool of 10,000 resources. Next, a large random sample of 2,500 was selected from the reduced population pool of 7,531 resources. The sample distribution by area is presented in Table 11.

Area	Sample	Annual Use				
ACT	97	234,283,141				
NSW	861	6,199,863,701				
QLD	833	3,684,922,461				
SA	119	893,317,813				
TAS	93	5,067,577,495				
VIC	497	2,036,621,336				
Totals	2,500	18,116,585,947				

Table 11 Samples Selected for Analysis

¹⁵ Following preliminary review of the results with AEMO staff, a second analysis was conducted on the customers with a maximum demand of less than 175 kW to ensure the results observed for the selected sample were sufficiently robust to apply to these small customers.

1.4 Additional Data Resources

AEMO provided additional data resources including 30-minute regional system load data, 30-minute pricing data, hourly weather data, and information on holidays.

1.4.1 30-Minute Regional System Load Data

AEMO provided 30-minute regional system load data for use in the analysis. The regional load data was used to identify high load days by region for use in selecting candidate "event" days for the analysis. Figure 4 presents a sample of the 30-minute system load data provided by presenting the data for the New South Wales territory.

Figure 4 – Sample System Load Data

1.4.2 Weather Data

Regional hourly weather data was secured for the analysis. Table 12presents weather station representing each state/region/postal code. The individual customer load data were mapped to an appropriate weather station for use in the analysis. An array of weather variables were available with an emphasis placed on dry bulb temperature and relative humidity. The weather variables included:

- Dry bulb temperature,
- Relative humidity,
- Wind speed,
- Wind gusts,

- Cloud cover,
- Wind direction,
- Pressure, and
- Precipitation.

Station_ID	Weather Station	Import_ID	State	Area	Post Code State	Post Code Local
Hobart Airport	Hobart Airport	94008	Tasmania	South East	7xxx	7170
Launceston	Launceston	91311	Tasmania	North East	7xxx	7250
Melbourne	Melbourne	86071	Victoria	South	3xxx	3000
Bendigo	Bendigo	81123	Victoria	North	3xxx	3550
Wagga Wagga	Wagga Wagga	72150	NSW	South West	2xxx	2650
Canberra Airport	Canberra Airport	70351	ACT	East	26xx	2609
Bankstown Airport	Bankstown Airport	66137	NSW	West Sydney	2xxx	2200
Coolangata	Coolangata	40717	Queensland	South East	4xxx	4225
Archerfield	Archerfield	40211	Queensland	South Brisbane	4xxx	4108
Rockhampton	Rockhampton	39083	Queensland	East	4xxx	4700
Townsville	Townsville	32040	Queensland	North East	4xxx	4810
Adelaide	Adelaide	23090	South Australia	South East	5xxx	5000
Sydney Airport	Sydney Airport	66037	NSW	South East Sydney	2xxx	2020
Melbourne Airport	Melbourne Airport	86282	Victoria	North West Melbourne	3xxx	3045
Adelaide Airport	Adelaide Airport	23034	South Australia	West Adelaide	5xxx	5950
Penrith	Penrith	67113	NSW	West Sydney	2xxx	2750
Mt Gambier	Mt Gambier, South Australia	94821	South Australia	South East	5xxx	5290
Armidale	Armidale	95773	NSW	North East	2xxx	2350
Cairns Airport	Cairns Airport	94287	Queensland	North	4xxx	4870
Orange	Orange	95726	NSW	East	2xxx	2800
Devonport	Devonport	95960	Tasmania	North	7xxx	7310
Wangaratta	Wangaratta	94889	Victoria	North	Зххх	3677

Table 12 Weather Station Mapping

Figure 5 presents the dry bulb temperature data for Canberra Airport representing the Australian Capital Territory. The top part of the figure displays the conventional two-dimensional graph with dry bulb temperature on the y-axis and hour on the x-axis. The full two year period is presented.

Figure 5 – Dry Bulb Temperature Data: Canberra Airport

1.4.3 Pricing Data

AEMO provided the project team with 30-minute pricing data by region. The pricing data was primarily used to identify high price periods for use in assigning candidate event days. Table 13 presents the top 20 half-hourly prices for each of the five regional areas. In the table we present the date, half-hour time and price. On selected half-hours the prices can range to nearly \$10,000 per MWh.

New South Wales		es	Queensland			South	South Australia			Tasmania			Victoria		
Date	Half Hr	Price	Date	Half Hr	Price	Date	Half Hr	Price	Date	Half Hr	Price	Date	Half Hr	Price	
9/11/2011	31	\$6,498	29/01/2013	34	\$6,299	4/1/2013	33	\$4,203	18/04/2012	33	\$4,928	29/11/2012	33	\$9,974	
29/11/2012	32	\$ 318	17/06/2013	15	\$4,335	2/7/2012	26	\$4,140	21/01/2013	12	\$2,544	29/11/2012	32	\$8,956	
29/11/2012	30	\$ 304	12/1/2013	38	\$3,625	21/10/2011	48	\$3,956	5/1/2013	21	\$2,189	29/11/2012	34	\$8,219	
23/07/2012	37	\$ 292	9/11/2011	31	\$3,608	2/7/2012	25	\$3,938	2/7/2012	25	\$2,188	2/7/2012	26	\$4,364	
31/07/2012	37	\$ 291	12/1/2013	39	\$3,183	12/9/2011	1	\$3,801	22/01/2013	47	\$2,186	4/1/2013	33	\$4,282	
29/11/2012	28	\$ 279	29/01/2013	33	\$3,167	29/11/2012	33	\$2,479	27/01/2013	45	\$2,184	2/7/2012	25	\$3,798	
16/10/2012	33	\$ 278	29/01/2013	32	\$3,100	7/1/2013	35	\$2,357	27/01/2013	33	\$2,184	29/11/2012	31	\$2,321	
23/07/2012	38	\$ 275	13/01/2013	30	\$2,918	4/1/2013	32	\$2,284	1/1/2013	1	\$2,184	4/1/2013	32	\$2,319	
16/10/2012	34	\$ 273	10/1/2012	28	\$2,893	31/05/2013	43	\$2,218	5/1/2013	46	\$2,183	11/9/2012	18	\$2,221	
29/11/2012	27	\$ 265	13/01/2013	31	\$2,613	21/06/2013	20	\$2,217	6/1/2013	2	\$2,181	11/9/2012	19	\$2,212	
30/11/2012	30	\$ 264	14/01/2013	15	\$2,499	24/05/2013	48	\$2,217	25/07/2011	22	\$2,084	4/1/2013	30	\$2,200	
16/10/2012	35	\$ 260	13/01/2013	22	\$2,487	5/10/2011	15	\$2,211	24/01/2012	31	\$1,527	13/12/2012	30	\$2,185	
30/11/2012	29	\$ 258	11/1/2013	14	\$2,350	4/1/2013	30	\$2,202	13/01/2013	46	\$1,280	12/3/2013	29	\$2,139	
30/11/2012	26	\$ 254	13/01/2013	25	\$2,290	29/04/2013	17	\$2,200	4/1/2013	29	\$1,234	21/06/2013	20	\$2,026	
16/10/2012	31	\$ 254	29/01/2013	17	\$2,278	3/6/2013	21	\$2,195	4/1/2013	30	\$1,060	21/06/2013	22	\$1,937	
23/07/2012	36	\$ 248	30/01/2013	16	\$2,240	25/04/2013	48	\$2,195	6/5/2013	36	\$ 776	18/02/2013	34	\$1,937	
2/7/2012	37	\$ 243	20/12/2012	30	\$2,234	30/11/2012	48	\$2,177	6/5/2013	35	\$ 600	28/05/2013	36	\$1,426	
29/11/2012	29	\$ 240	16/03/2013	34	\$2,230	21/10/2011	43	\$2,171	12/11/2011	18	\$ 500	4/1/2013	29	\$1,409	
2/7/2012	36	\$ 239	10/1/2013	33	\$2,228	5/6/2013	36	\$2,164	12/11/2011	17	\$ 500	29/11/2012	35	\$ 962	
9/7/2012	37	\$ 238	17/06/2013	35	\$2,222	2/6/2013	37	\$2,156	30/10/2011	15	\$ 499	18/02/2013	33	\$ 958	

Table 13 Top 20 Prices

1.4.4 Holidays

The project team used a provided website that identifies the regional holidays. The following website was used to develop a list of holidays for each region. Holidays do not play a significant role in the current analysis and are included simply for completeness.

http://www.fairwork.gov.au/leave/public-holidays/pages/listof2011publicholidays.aspx

A sample of the holiday list developed is provided in Table 14. The table is for Victoria.

Area	Holiday	Date	Year
VIC	New Year's Day	Saturday 1 January and Monday 3 January *	2011
VIC	New Year's Day	Saturday 1 January and Monday 3 January *	2011
VIC	Australia Day	Wednesday 26 January	2011
VIC	Labour Day	Monday 14 March	2011
VIC	Good Friday	Friday 22 April	2011
VIC	Saturday after Good Friday	Saturday 23 April	2011
VIC	Easter Monday	Monday 25 April	2011
VIC	Anzac Day	Tuesday 26 April **	2011
VIC	Queen's Birthday	Monday 13 June	2011
VIC	Melbourne Cup	Tuesday 1 November ***	2011
VIC	Christmas Day	Tuesday 27 December ****	2011
VIC	Boxing Day	Monday 26 December	2011
VIC	New Year's Day	Sunday 1 January	2012
VIC	New Year's Day	Monday 2 January*	2012
VIC	Australia Day	Thursday 26 January	2012
VIC	Labour Day	Monday 12 March	2012
VIC	Good Friday	Friday 6 April	2012
VIC	Saturday after Good Friday	Saturday 7 April	2012
VIC	Easter Monday	Monday 9 April	2012
VIC	Anzac Day	Wednesday 25 April	2012
VIC	Queen's Birthday	Monday 11 June	2012
VIC	Melbourne Cup	Tuesday 6 November **	2012
VIC	Christmas Day	Tuesday 25 December	2012
VIC	Boxing Day	Wednesday 26 December	2012
VIC	New Year's Day	Tuesday 1 January	2013
VIC	Australia Day	Monday 28 January*	2013
VIC	Labour Day	Monday 11 March	2013
VIC	Good Friday	Friday 29 March	2013
VIC	Saturday after Good Friday	Saturday 30 March	2013
VIC	Easter Monday	Monday 1 April	2013
VIC	Anzac Day	Thursday 25 April	2013
VIC	Queen's Birthday	Monday 10 June	2013
VIC	Melbourne Cup	Tuesday 5 November**	2013
VIC	Christmas Day	Wednesday 25 December	2013
VIC	Boxing Day	Thursday 26 December	2013

Table 14 Holidays: Victoria

1.5 Candidate Event Days

The project team examined the regional secondary data, i.e., system load, temperature, and pricing data, to construct an array of candidate event days for analysis and reporting. The analysis examined candidate days in October through March. The criterion used included:

- 1. High temperature days,
- 2. High system load days, and
- 3. High pricing days.

A total of 83 candidate event days (62 weekdays and 21 weekend days) were defined based on regional load characteristics, weather and pricing. This included several runs of multiple days, e.g., January 17, 2013 through January 21, 2013 and March 7, 2013 through March 9, 2013.

1.5.1 Candidate Event Half-Hours

AEMO selected the "candidate event" half-hours as afternoon hours ending 1pm through 5pm for the months of October through March. After conducting the analysis, the project team examined the timing of the highest demand periods. The analysis is presented in Figure 6. The figure presents a frequency distribution for the top 100 half-hour demands by region. All regions plus the aggregate system are represented. From this chart it seems prudent to extend the half-hour window to the period ending 7pm. All the analyses were rerun and are reported in the appendices.

Figure 6 – Timing of Peak Demand

1.6 Baseline Methodologies

The analysis featured a total of nine baselines, with up to four variants of each baseline. The variants represent the unadjusted baseline and three common, same day, adjustments to the baseline including an additive adjustment, a multiplicative adjustment, and a multiplicative capped adjustment. Accordingly, there were 36 different baseline/variants combinations included in the analysis. The nine baselines included in the analysis are:

- 1. PJM Economic;
- 2. Middle 4 of 6 Preceding Like Days (PJM)¹⁶;
- 3. PJM Emergency Comparable Day, Non-weather Sensitive;
- 4. PJM Emergency Same Day;
- 5. PJM Emergency Comparable Day, Weather Sensitive;
- 6. ISO New England ("ISONE") Standard;

¹⁶ The Middle 4 of 6 baseline methodology was tested as part of the PJM baseline methodology study (*PJM Empirical Analysis of Demand Response Baseline Methods*, KEMA April 20, 2011). This methodology was proposed by PJM's Market Monitoring Unit for evaluation in that study. This report often refers to the Middle 4 of 6 as the 'PJM Middle 4 of 6' given it was included in that research.

- 7. California ISO ("CAISO") Standard;
- 8. Weekend Middle 2 of 4; and
- 9. Weekend PJM Economic.

Please note, regression based baselines were excluded from the analysis due to the following factors:

- More difficult to implement and administer;
- More challenging to explain to participants;
- Have been found in other analyses to not outperform the more common baselines tested.

#	CBL Protocol	Final Selection	Estimation Method
1	PJM Economic	Weekday Events: High 4 of 5 most recent qualifying days.	Average
2	Middle 4 of 6 Preceding Like Days	Middle 4 of 6 most recent qualifying days.	Average
3	PJM Emergency Comparable Day, Non-weather Sensitive	1 Day, excluding weekend/holidays	Matching
4	PJM Emergency Same Day	Hours pre- and post-event	Average
5	PJM Emergency Comparable Day, Weather Sensitive	1 Day, excluding weekend/holidays	Matching
6	ISO-NE Standard	0.9*baseline + 0.1*meter	Average
7	CAISO Standard	Recent 10	Average
8	Weekend Middle 2 of 4	Weekend/holiday events: Middle of 2 of 3 most recent qualifying like days	Average
9	Weekend - PJM Economic	Weekend/holiday events: High of 2 of 3 most recent qualifying like days	Average

Table 15 - Baseline Methodologies Evaluated

These baseline methodologies met the following criteria:

- Cover a range of estimation methods (averaging and matching);
- Cover a range of timeframes (from same/previous day to previous year);
- Cover a range of data selection rules (proximity to event, similarity of load, similarity of weather, highest or middle x of y);
- Can address weather-sensitive loads; and,
- Cover a range of complexities.

Each baseline is described in further detail below.

1.6.1 PJM Economic Baseline

The PJM Economic Baseline consists of half hourly loads averaged across the "highest x out of y" most recent days, where x and y are numbers that depend on day type:

- For *weekday* events, the baseline consists of the average half hourly loads of the 4 highest kWh days out of the 5 most recent weekdays preceding the event, excluding holidays, weekend days, and event days.
- For *weekend or holiday* events, the baseline consists of the average half hourly loads of the 2 highest kWh days out of the 3 most recent weekend or holiday days, excluding event days.

The loads in each event half hour are averaged over the selected comparison days to form the baseline. The protocol described in the PJM Operating Agreement limits the "look-back window" for calculating the baseline to 45 calendar days in most cases¹⁷.

1.6.2 Middle 4 of 6

The Middle 4 of 6 baseline is an "x of y" baseline with the selection criterion for comparison days is to drop the highest and lowest kWh days out of the most recent six. The half hourly loads are then averaged over the remaining four days to form the baseline.

1.6.3 PJM Emergency GLD Comparable Day (non-weather sensitive) Baseline

This baseline only exists for weekdays. It consists of the half hourly loads from the non-holiday weekday in close proximity to the event day, either preceding or following it. In the event of a tie, the previous day is chosen.

1.6.4 PJM Emergency GLD Comparable Day (weather sensitive) Baseline

This baseline is also only defined for weekdays. The comparison day is chosen using a similarity measure based on the temperature-humidity index (THI)¹⁸.

¹⁷ As stated, event days are typically excluded from the baseline calculation. If there are not enough non-event days in the 45 day look-back window, PJM then includes previous event days in the baseline calculation until the minimum number of CBL basis days is attained. In the case of the highest 4 of 5 baseline, PJM ranks the event days within the 45 day look-back window by usage and includes the highest usage event days until the number of CBL basis days is attained. The purpose of using event day loads instead of non-event day loads from the period prior to the look-back window is to include recent data in the baseline calculation which most represents the usage to the current period. The purpose of using the highest usage event days is to select event days where curtailment was likely less than lower usage event days, and thus more closely represents what usage would have been on a nonevent day. Other ISOs have similar rules in their baseline calculations, e.g., CAISO and MISO.

¹⁸ THI = temp -0.55*(1 - humid)*(temp - 14.44), where temp is dry-bulb temperature in degrees Celsius, and humid is relative humidity expressed as a decimal fraction.

- The temperature-humidity index (THI) is calculated for each half-hour of the event period on the event day, and for the same hour on every other non-event, non-holiday weekday in the same season.
- The sum of squared differences between the half hourly THI values for the event period on the event day and the same half-hours on each comparison day is calculated.
- The comparable days are ranked by their sums of squared differences, and the minimum is chosen as the comparison day.

The baseline consists of the half hourly loads from the selected comparison day.

1.6.5 PJM Emergency GLD Same Day (Before/After Event) Baseline

This is a flat baseline consisting of the average of the half hourly loads in the two hours ending one hour prior to the event hour and the two hours beginning one hour after the end of the event hour.

1.6.6 CAISO Standard Baseline

The CAISO Standard Baseline is also of the "highest x out of y most recent days" type, except that there are no excluded days (that is, x = y):

- For weekday events, the baseline consists of the half hourly loads averaged over the 10 most recent days preceding the event, excluding holidays, weekend days, and event days.
- For weekend or holiday events, the baseline consists of the average half hourly loads of the 4 most recent weekend or holiday days, excluding event days.

The loads in each event half-hour are averaged over the selected comparison days to form the baseline.

1.6.7 ISONE Standard Baseline

This baseline differs from the preceding ones, in that it consists of a weighted average of the preceding day's baseline and the current day's actual metered load. The baseline is updated on every non-event weekday. It is not calculated on weekends or holidays. On (weekday) event days, the baseline is defined as the previous day's baseline.

For a new asset with no previously computed baseline, the baseline is the simple average half hourly load calculated for each half-hour of the day from the five most recent preceding business days with complete meter data. Since the asset isn't permitted to participate in a DR program during this initial 5-day window, event days are not excluded for these calculations. (For purposes of a performance analysis, all

of the accounts are "new" at the start of the file, or on the date they first enter the dataset, whichever comes later.)

For an existing asset (i.e., one with at least five days of usable load data), the current-day baseline is obtained as follows:

- If the current day is an event day, the asset's baseline for the day is equal to the baseline from the previous day.
- If the current day is not an event day, then the asset's baseline is updated according to the following algorithm:

Current day baseline = 0.9*previous day baseline + 0.1*current day metered load

for each half hour of the current day.

1.7 Adjustments

The two basic kinds of pre-event period adjustments are difference (additive) and ratio (multiplicative) adjustments. Traditionally, these approaches compare observed load and baseline load for some preevent period. An adjustment that makes the pre-event period baseline load equal to the pre-event period observed load is applied to the baseline throughout the event period. The additive approach measures the magnitude of the pre-event period load difference (positive or negative), and adds that to the baseline throughout the event period baseline the pre-event period baseline load equal to the pre-event period baseline load equal to the pre-event period baseline throughout the event period.

The basic additive and ratio adjustments utilized for the Phase 2 baseline performance testing are:

- The Symmetric Additive adjustment: This is the simple additive adjustment based on load differences in the first 3 of 4 previous hours. (Note: the asymmetric additive adjustments have been abandoned on the grounds that they can be too easily gamed).
- A Simple Ratio Adjustment based on the first 3 of 4 previous hours: The simple ratio adjustment we propose maintains consistency with the symmetric additive adjustment with regard to the hours used for the adjustment. This adjustment will allow an "apples to apples" comparison of additive and ratio adjustments.

1.8 Example Plots of Baselines

This section presents specific examples of the baselines included in this analysis. These examples are individual sites' actual, observed load compared to the predicted load using the various baseline

methodologies. These examples use the load data and the calculated baselines for Thursday, January 24, 2013, which is one of the days determined to be a likely event day.

Assuming that the event takes place from 1:00 PM to 5:00 PM, it is the accuracy with which a baseline can reproduce the actual load during this period that defines the success of the baseline. The four hours prior to the event, 9:00 AM to 1:00 PM, are the period during which baseline adjustments are calculated.

Though the plots in these examples include all weekday baselines considered in this analysis, the plots are only designed to illustrate baselines in general. These plots are not designed to necessarily distinguish certain baselines. They are examples of the kind of data that underlie the aggregate statistics that we use to distinguish baselines.

Figure 7 shows an example of a customer with a typical, bell-shaped load curve. This customer was defined as a low-variability load during the segmentation analysis meaning the load does not vary much for this site. The example shows that the set of unadjusted baselines provide a reasonably good estimate of the actual load.

Figure 8 illustrates the same site in Figure 7, but now with an additive adjustment. With the additive adjustment, the baselines provide a better estimate of the actual load in general.

Figure 8 - Example of Baselines with Additive Adjustment

Using the same site and the same day as Figure 7 and Figure 8, Figure 9 illustrates the baselines using a multiplicative adjustment. This example shows that there is no discernible difference between the performances of the baselines for this site on this day using a multiplicative adjustment when compared to the additive adjustment.

Figure 9 - Example of Baselines with Multiplicative Adjustment

The next example in Figure 10 and Figure 11 is depicting a different site than the examples above and illustrates the potential differences between the multiplicative adjustment and the multiplicative adjustment that has been capped. Figure 10 shows the baselines with an 'uncapped' adjustment, and Figure 11 shows the baseline with a capped adjustment.

Figure 10 - Example of Baselines with Multiplicative Adjustment

Figure 11 - Example of Baselines with Capped Multiplicative Adjustment

The final example in Figure 12 is depicting a different site than the examples above and illustrates the potential differences among the performance of certain baselines. The specific baselines are two baselines with a shorter (more recent) historical data requirement, the PJM High 4 of 5 and the Middle 4 of 6, compared to the CAISO and ISONE baselines which require longer period of data for their calculation. All of the baselines depicted are using an additive adjustment.

In this particular case, the site is a relatively higher variable load customer with load increasing in recent days. The baselines that are restricted to using the more recent days provide a better estimate of the actual load. The baselines relying on a longer historical period, CAISO and ISONE, underestimate the actual load given they smooth out the recent increase in load in the late afternoon.

Figure 12 - Comparison of Baselines with More vs. Less Days Included in Calculation

2. Results – Accuracy, Bias and Variability

In this section we review the results of the analysis based on the reduced dataset, i.e., after removing the high variable load customers¹⁹. Three statistics were chosen to measure the three quantitative aspects of baseline performance:

- 1. Accuracy how closely a baseline method predicts customers' actual loads in the sample,
- 2. Bias the systematic tendency of a baseline method to over- or under-predict actual loads, and
- 3. Variability how well the baseline does at predicting half hourly load under many different conditions and across many different customers.

Following consultation with AEMO, the base analysis was conducted on the five hour period for hours ending 1pm through 5pm on candidate peak days. After further discussion, the project team conducted additional analyses on the seven hour period ending 7pm. Key tables for this additional analysis are included in an Appendix to this report.

In this section, results are presented for the overall group and then by the various segmentations including:

- Customer Size
 - Up to 175 kW,
 - 175 kW to 500 kW,
 - 500 kW to 2,000 kW,
 - 2,000 kW to 10,000 kW, and
 - Over 10,000 kW.
- Weather Sensitivity
 - Not Weather Sensitive, and
 - Weather Sensitive.
- Load Variability
 - Lower Quartile,
 - Inner Quartile Range, and
 - Upper Quartile.
- Geographic Region
 - North (Queensland), and
 - South (All Other Territories).

¹⁹ Load variability was determined by examining the residuals after modelling the load for weather effects. Customers with a Thiel's U-statistic greater than 40% were excluded from the analysis. This is similar to the approach taken by the authors in the PJM analysis. Additional analysis was conducted on the 15% of variable load customers excluded from the base analysis and is included as an Appendix in this report.

2.1 Accuracy

The attribute given the most emphasis in the analysis was **accuracy**, or how closely a baseline method predicts customers' actual loads in the sample. The statistic chosen to measure accuracy was the baseline's relative root mean squared error (RRMSE). This statistic expresses the baseline's average half hourly accuracy as a fraction of average half hourly load. An RRMSE for an individual customer of 0.1, for example, means that the customer's estimated baseline is typically (on the order of 2/3 of the time) within 10 percent of the actual load. For a given customer, some half hours will have a higher difference and some smaller. For a group of customers, a median RRMSE of 0.1 means that for the typical customer the estimated baseline is typically within 10 percent of the average load. Since not all customers are typical, some will have a higher typical difference, and some smaller.²⁰

The RRMSE is based on squared prediction errors. This technique in essence weights large errors much more heavily than small or midsized errors. In contrast, the errors are weighted evenly with a technique that measures errors based on the absolute values of the prediction errors. This means that the effect of large half hourly errors in the predicted load will result in a higher RRMSE as opposed to a mean absolute percentage error (MAPE).

2.1.1 Overall

A comparison of the accuracy metric among the baselines tested is presented in Table 16. The results are sample medians of each metric, and are colour coded for ordering. Across all baselines and adjustments, the baseline with the smaller number or "greener" colour can be considered better than baselines with higher numbers or "redder" colours. The values in the table are rounded, so the underlying data may produce slightly different shades for values that appear to be the same.

The comparison in the table highlights the superiority of baselines with same day, load-based adjustments. Across a range of different baselines, both the additive and multiplicative adjustments provide a significant improvement to the accuracy of the underlying baseline and therefore represent the best performance. The performance difference from the use of an additive adjustment when compared to a multiplicative adjustment is insignificant. The CAISO and ISONE baselines had slightly better, although relatively insignificant, empirical performance relative to the other X of Y type baselines (such as the PJM 4 of 5 or PJM 4 of 6). This is based purely on the empirical performance and does not consider the feasibility and administration involved or other factors that might go into the selection of a final baseline.

²⁰ The RRMSE combines the systematic errors measured by the ARE (bias) and the variability of errors captured by the RER (variability). For this reason, the overall accuracy measure was given primary emphasis in the study.

Baseline Type	PINHAOS	Middle 4 065	PIN COMD.	Ven Same C	PIN Weath	ISONE	Calso Joor	Weekener	Weekend no.	Weekend Hy	5 JO .
Unadjusted Baseline	0.143	0.151	0.146	0.141	0.142	0.149	0.151	s	0.187	0.197	
Additive Adjustment	0.107	0.108	0.127	0.142	0.123	0.101	0.103	end	0.136	0.141	
Multiplicative Adjustment	0.109	0.110	0.132	0.142	0.127	0.102	0.103	še k	0.137	0.139	
Multiplicative Adjustment (Cap)	0.111	0.114	0.135	0.143	0.126	0.106	0.109	Š	0.143	0.145	

Table 16 Comparison of Accuracy of Baselines²¹

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

Table 17 presents a more complete array of statistics for each of the tested baselines including the adjustment mechanisms. The table presents the lower 10^{th} percentile, median, mean, and upper 90^{th} percentile statistics. For the CAISO baseline with the additive adjustment the accuracy statistic ranges from a low of 4.86% (10^{th} percentile) to a high of 21.87% (90^{th} percentile) with a median of 10.35%.

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Overall	count	2117	2117	2117	2117	2117	2117	2117	2116	2116
ACCURACY	Unadjusted	10 th Percentile	0.0695	0.0723	0.0741	0.0603	0.0700	0.0738	0.0740	0.0820	0.0819
ACCURACY	Unadjusted	Median	0.1433	0.1511	0.1457	0.1405	0.1417	0.1485	0.1506	0.1872	0.1965
ACCURACY	Unadjusted	Mean	0.1633	0.1708	0.1678	0.1705	0.1810	0.1679	0.1699	0.2614	0.4195
ACCURACY	Unadjusted	90 th Percentile	0.2857	0.2965	0.2892	0.3289	0.3676	0.2910	0.2959	0.4820	0.5589
ACCURACY	Additive Adj	10 th Percentile	0.0511	0.0508	0.0615	0.0670	0.0590	0.0482	0.0486	0.0564	0.0584
ACCURACY	Additive Adj	Median	0.1072	0.1076	0.1270	0.1416	0.1228	0.1015	0.1035	0.1356	0.1412
ACCURACY	Additive Adj	Mean	0.1271	0.1278	0.1505	0.1684	0.1495	0.1207	0.1219	0.2294	0.2436
ACCURACY	Additive Adj	90 th Percentile	0.2289	0.2316	0.2756	0.3068	0.2798	0.2187	0.2226	0.4102	0.4409
ACCURACY	Multiplicative Adj	10 th Percentile	0.0514	0.0514	0.0632	0.0670	0.0599	0.0482	0.0488	0.0573	0.0590
ACCURACY	Multiplicative Adj	Median	0.1091	0.1095	0.1322	0.1416	0.1274	0.1015	0.1030	0.1373	0.1391
ACCURACY	Multiplicative Adj	Mean	0.1320	0.1352	0.4935	0.1684	0.5227	0.1215	0.1234	0.2353	0.2524
ACCURACY	Multiplicative Adj	90 th Percentile	0.2376	0.2426	0.3193	0.3068	0.3242	0.2200	0.2252	0.4271	0.4390
ACCURACY	Capped Adjustment	10 th Percentile	0.0524	0.0535	0.0689	0.0693	0.0617	0.0491	0.0507	0.0592	0.0602
ACCURACY	Capped Adjustment	Median	0.1108	0.1144	0.1351	0.1435	0.1263	0.1056	0.1087	0.1426	0.1451
ACCURACY	Capped Adjustment	Mean	0.1308	0.1357	0.1564	0.1623	0.1602	0.1255	0.1289	0.2152	0.3349
ACCURACY	Capped Adjustment	90 th Percentile	0.2362	0.2510	0.2739	0.2842	0.3215	0.2301	0.2391	0.4168	0.4465

Table 17 Baseline Accuracy: Distribution Statistics

2.1.2 Customer Size

Table 18 presents a summary of the "Accuracy" statistic based on customer size as measured by the 2012 maximum demand of the customer. Examination of the table indicates that the same baseline strategies perform consistently across all size categories. The X of Y, ISONE, and CAISO baselines all perform similarly as long as an adjustment is allowed. On the weekends, the weekend 2 of 4 seems to perform best. Given these results, there is no apparent reason to segment by size.

²¹ Note that each table presented uses a colour coding scale relative to the results contained within the weekday and weekend results of each table. The colour coding scale is not consistent among all tables in the report given that results are meant to be colour coded to show relative performance within each table's results.

Size Category	Baseline Type	P.INTH4 OF S	Widdled of 6	PIN Comp Day	PINS ^{ame Da} V	P.In WeathSens	ISONE	C4/50 10 of 10	Wall	Weekends Weekend M2 of 4	Weekend H2 of 3	
	Unadjusted Baseline	0.134	0.138	0.127	0.124	0.135	0.136	0.136	ş	0.162	0.162	l.
Up to 175	Additive Adjustment	0.110	0.109	0.130	0.147	0.129	0.103	0.105	ê	0.128	0.132	1
(n=2,184)	Multiplicative Adjustment	0.113	0.113	0.135	0.147	0.135	0.105	0.107	ee	0.134	0.137	1
() -)	Multiplicative Adjustment (Cap)	0.112	0.112	0.129	0.142	0.130	0.105	0.107	3	0.130	0.134	1
	Unadjusted Baseline	0.145	0.151	0.146	0.137	0.137	0.149	0.150	ъ	0.189	0.198	1
1/5 kW to	Additive Adjustment	0.109	0.109	0.128	0.144	0.122	0.103	0.105	ên	0.140	0.146	1
(n=1 355)	Multiplicative Adjustment	0.111	0.112	0.134	0.144	0.127	0.103	0.105	eel	0.141	0.144	1
(1)0007	Multiplicative Adjustment (Cap)	0.112	0.114	0.135	0.147	0.124	0.106	0.109	3	0.145	0.149	1
	Unadjusted Baseline	0.141	0.147	0.144	0.160	0.144	0.143	0.147	ъ	0.184	0.199	1
500 to	Additive Adjustment	0.103	0.104	0.122	0.135	0.123	0.098	0.099	en	0.132	0.140	1
2,000 KW (n=471)	Multiplicative Adjustment	0.104	0.104	0.128	0.135	0.126	0.097	0.098	ee	0.135	0.138	1
(Multiplicative Adjustment (Cap)	0.106	0.110	0.133	0.140	0.126	0.101	0.103	≥	0.141	0.148	1
	Unadjusted Baseline	0.138	0.147	0.144	0.126	0.170	0.148	0.152	ds	0.176	0.184	1
2,000 to	Additive Adjustment	0.096	0.101	0.119	0.118	0.116	0.094	0.094	еñ	0.106	0.116	1
(n=141)	Multiplicative Adjustment	0.099	0.098	0.128	0.118	0.125	0.093	0.093	ee	0.112	0.118	1
(1 .1)	Multiplicative Adjustment (Cap)	0.109	0.115	0.131	0.123	0.144	0.100	0.108	≥	0.133	0.134	1
	Unadjusted Baseline	0.192	0.197	0.196	0.105	0.251	0.198	0.200	ds	0.179	0.176	1
Over 10,000	Additive Adjustment	0.133	0.137	0.159	0.147	0.178	0.123	0.127	e D	0.110	0.109	1
кvv (n=50)	Multiplicative Adjustment	0.134	0.140	0.165	0.147	0.195	0.124	0.130	eek	0.111	0.108	1
(1-30)	Multiplicative Adjustment (Cap)	0.146	0.148	0.161	0.140	0.222	0.141	0.142	≥	0.137	0.117	1

Table 18 Accuracy of Baselines Segmented by Customer Size

Color coded, green = good, rank over rows within size category. Weekend baselines are color coded independently.

The size segmentation shows that baselines for smaller and very large accounts are slightly less accurate. This is likely due to the greater diversity of business types in the smaller account segments. Other than this observation, the segmentation by size provides little additional perspective on the choice of optimal baseline.

For reference, Table 19 lists the average annual kWh for each of the size categories.

Size Segment	Average Annual kWh
<= 175 kW	472,998
175 – 500 kW	1,152,810
500 – 2,000 kW	3,273,390
2,000 – 10,000 kW	17,136,617
> 10,000 kW	103,863,642

Table 19 Average Annual kWh by Customer Size Segment

2.1.3 Weather Sensitivity

Table 20 presents the overall results after segmenting by weather sensitive load. Examining Table 6 indicates that the same four baselines, i.e., the two X of Y type baselines, ISONE and CAISO with same day load-based adjustments are equally effective across non-weather and weather sensitive segmentations. Our conclusion is that there is no need to segment based on weather sensitivity because the use of a same day adjustment improves both the non-weather sensitive and weather sensitive segments.

Weather Sensitive	Baseline Type	PIN H4 OF C	Middle 4 0.5	PIN COMD.	PINS ^{ame} D	Ver Neath Old	^{ISONE}	C4150 10 of 10	Weekenas Weekenas	Weekend L.	
Not	Unadjusted Baseline	0.097	0.100	0.099	0.100	0.115	0.099	0.099	0.116	0.114	
Mosthor	Additive Adjustment	0.086	0.085	0.102	0.108	0.105	0.081	0.082	0.100	0.104	
Consitius	Multiplicative Adjustment	0.087	0.088	0.106	0.108	0.108	0.082	0.084	0.103	0.105	
sensitive	Multiplicative Adjustment (Cap)	0.087	0.087	0.101	0.108	0.108	0.082	0.083	0.101	0.106	
	Unadjusted Baseline	0.171	0.177	0.163	0.148	0.153	0.175	0.176	0.213	0.209	
Weather	Additive Adjustment	0.136	0.137	0.159	0.189	0.151	0.127	0.130	0.160	0.163	
Sensitive	Multiplicative Adjustment	0.141	0.142	0.168	0.189	0.161	0.130	0.132	0.171	0.168	
	Multiplicative Adjustment (Cap)	0.137	0.140	0.155	0.178	0.151	0.130	0.133	0.168	0.165	

Table 20 Accuracy	of Baselines	Segmented by	Weather	Sensitivity
i ubic mo niccui ucy	or Dusennes	beginemeed by	v v cutifer	Schold vity

Color coded, green = good, rows are ranked within each category. Weekend baselines are color coded independently.

A common structure of DR programs stipulates an unadjusted baseline for all accounts with an option for a same-day, load-based adjustment for accounts that are weather sensitive. This approach is not justified on the basis of the accuracy results reported in this study. While the same-day, load-based adjustment does not improve the accuracy for non-weather sensitive accounts to quite the same degree, there is still an improvement of 10 to 20 percent. A decision to forgo the load-based adjustment must be based on other considerations, such as administrative costs and/or non-typical event day behaviour (e.g.: pre-cooling).

2.1.4 Load Variability

Table 21 presents the accuracy of the baseline approaches based on a segmentation based on non-weather related load variability. Clearly these results indicate that the accuracy of the baseline erodes with increased load variability. The accuracy is exceptional for loads displaying low levels of variability. For the interquartile range of customers, i.e., variability category medium, the accuracy doubles but is still a very reasonable ± 11 to $\pm 12\%$. However, the "high" variable load category shows accuracy values that range above $\pm 20\%$. It is important to note that these results are calculated after removing the most variable customers, i.e., the top 15% of the variable load customers. Whenever a customer's load is uncorrelated with any identifiable previous load pattern, no generalized baseline methodology can produce a consistent, effective baseline.

Variability Category	Baseline Type	PIN Ha OF	Middle 4 of	PIN COMD.	PINSame D	App Meant	ISONE	Calso ID of	Meer 10	Westends Westendar	Weekend k	E 40 21.
	Unadjusted Baseline	0.090	0.093	0.093	0.078	0.081	0.094	0.094	Ş	0.119	0.113	
Low	Additive Adjustment	0.068	0.069	0.082	0.088	0.074	0.064	0.066	ên	0.081	0.083	
(n=624)	Multiplicative Adjustment	0.070	0.070	0.085	0.088	0.076	0.065	0.067	ee	0.084	0.085	
	Multiplicative Adjustment (Cap)	0.069	0.070	0.088	0.091	0.075	0.065	0.066	3	0.082	0.084	
	Unadjusted Baseline	0.162	0.170	0.163	0.159	0.165	0.167	0.169	ds	0.213	0.219	
Med	Additive Adjustment	0.123	0.125	0.144	0.160	0.140	0.116	0.118	en	0.152	0.158	
(n=1,250)	Multiplicative Adjustment	0.125	0.127	0.148	0.160	0.147	0.116	0.118	ee	0.154	0.158	
	Multiplicative Adjustment (Cap)	0.127	0.131	0.150	0.157	0.147	0.120	0.124	≥	0.160	0.164	
	Unadjusted Baseline	0.289	0.304	0.292	0.241	0.421	0.305	0.311	ŝ	0.379	0.402	
High	Additive Adjustment	0.231	0.233	0.281	0.303	0.294	0.222	0.224	en	0.311	0.327	
(n=243)	Multiplicative Adjustment	0.232	0.240	0.301	0.303	0.321	0.219	0.226	eek	0.317	0.324	
	Multiplicative Adjustment (Cap)	0.249	0.267	0.281	0.258	0.360	0.244	0.263	Š	0.333	0.343	

Table 21 Accuracy of Baselines based on "Variable Load" Segmentation

Color coded, green = good, rank rows within category. Weekend baselines are color coded independently.

Other ISOs in the US are struggling with this same issue, i.e., baseline approaches considered in this analysis may not be applicable for customers with certain kinds of highly variable loads. The project team has had additional discussions with PJM regarding actions they are taking with regard to high variable load customers. PJM defines a high variable load customer as someone with an RRMSE greater than 20% during 60 simulated event periods²². PJM has used what they consider a rather simple, conservative load estimate by calculating the average minimum load during the event window for the five days prior to the actual event (Maximum Base Load approach). They also offer the use of an approach called the "Same Day (3+2)" approach. This approach averages the three hours before the event starts (after skipping the first hour before the event) and the two hours after an event stops (after skipping the first hour after the event). An additional "Match Day (3 Day Average)" approach is available that look at matching non-event hours on event days with three "matched days" based on the lowest squared deviation of the non-event hours. The "Match Day" approach reaches back 45-60 days prior to the event. Clearly, what to do with high variable load customers continues to be a challenge.

2.1.5 Geographic Region

Table 22 presents the accuracy of the baseline approaches for a segmentation based on geographic region. For this analysis, the Queensland area was defined as Region 1=North and all other areas were grouped together and defined as Region 2=South. While the accuracy is somewhat better, $\pm 9\%$ compared to $\pm 11\%$ for the North region, the "best" baselines are consistent between the two regions. There seems to be no discernible benefit for selecting different baselines for the different regions.

²² PJM Manual 11: Energy & Ancillary Services Market Operations, Revision 60, August 20, 2013

Region	Baseline Type	^D IIA Ha OF E	Middle 4 of	PIN COMD CO	PIN Same C	PIN Weath	ISONE	Calso ID OF	Weeken 140	Weekend Mrs	Weekend H2 of 9	
1=North	Unadjusted Baseline	0.122	0.128	0.127	0.138	0.120	0.128	0.130	ъ	0.185	0.199	
1=North	Additive Adjustment	0.091	0.091	0.111	0.119	0.107	0.085	0.087	ê	0.133	0.139	
1=North	Multiplicative Adjustment	0.092	0.093	0.115	0.119	0.111	0.086	0.088	ee	0.137	0.137	
1=North	Multiplicative Adjustment (Cap)	0.095	0.095	0.124	0.131	0.111	0.088	0.092	≥	0.143	0.143	
2=South	Unadjusted Baseline	0.158	0.164	0.154	0.143	0.154	0.161	0.163	ъ	0.188	0.195	
2=South	Additive Adjustment	0.118	0.118	0.139	0.154	0.133	0.111	0.113	en	0.138	0.143	
2=South	Multiplicative Adjustment	0.119	0.120	0.144	0.154	0.136	0.110	0.112	ee	0.138	0.140	
2=South	Multiplicative Adjustment (Cap)	0.120	0.124	0.142	0.151	0.136	0.113	0.117	≥	0.143	0.147	

Table 22 Accuracy of Baselines based on Regional Segmentation

Color coded, green = good, rank over all rows within Region. Weekend baselines are color coded independently.

2.1.6 Observations

The following observations were made with respect to the Accuracy statistic:

- Across the board four of the seven weekday baselines testing outperformed the remaining three. The four high performers included:
 - PJM H4of5,
 - Middle 4of6,
 - ISONE, and
 - CAISO 10of10;
- In most instances, adjustment mechanisms improved the performance of the unadjusted baseline;
- The Weekend M2of4 consistently outperformed the Weekend H2of3;
- Segmentation had no discernible effect on the selection of high performing baselines.

2.2 Bias

The second baseline attribute analysed was **bias**, or the systematic tendency of a baseline method to overor under-predict actual loads. Bias was measured using the baseline's average relative error (ARE). This statistic, for a given customer, is the average half hourly baseline less the average half hourly actual load, expressed as a fraction of actual half hourly load. A median ARE value of zero would indicate that the typical customer in our sample had no systematic tendency to over- or under-predict loads using that baseline, whereas a positive (negative) value would indicate a tendency to over- (under-) predict loads. The closer ARE is to zero, the closer the baseline is to being unbiased.

2.2.1 Overall

Table 37 presents the absolute value of the median bias estimates for each of the tested baselines and the associated adjustments. The level of bias was non-existent or extremely small, i.e., less than 1%, for all CBLs with the additive and multiplicative adjustments. Unadjusted baselines appeared to be more susceptible to bias, for example the PJM Same Day, which resulted in a 5.5% bias for the typical customer. A 1% positive bias indicates that the CBL will be estimated 1% too high for the typical customer during a likely summer event day. Several baselines, including the CAISO 10 of 10 with the additive adjustment) were found to be unbiased for the typical customer as represented by a zero value in Table 37.

Baseline Type	P.III. Hade	Middle 4 0.0	P.IM COMD.	VINSame C	PIN Weath	lson _E	Calso zone	Week 240	Meekend no.	Weekend L.	
Unadjusted Baseline	0.003	0.030	0.013	0.055	0.004	0.039	0.034	s	0.027	0.025	
Additive Adjustment	0.008	0.000	0.003	0.013	0.004	0.000	0.000	and a	0.000	0.008	
Multiplicative Adjustment	0.009	0.001	0.007	0.013	0.007	0.001	0.001	sek.	0.002	0.012	
Multiplicative Adjustment (Cap)	0.005	0.007	0.003	0.036	0.001	0.006	0.007	ž	0.011	0.014	

Table 23	Comparison	of Baseline	Bias ²³
----------	------------	-------------	--------------------

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

Table 24 presents the actual distribution statistics for the bias statistic. The table presents the 10^{th} , 50^{th} (median) and 90^{th} percentiles along with the mean. For the PJM (m4of6) with additive adjustment, the 10^{th} to 90^{th} percentile range (i.e., 80% of all customers) fall between a -2.0% to a +1.8%. Distribution statistics tables are included in the Appendices.

²³ Note the bias statistics are presented in absolute terms for comparison purposes. Additional tables can be found in the Appendices that highlight the distribution statistics for the bias statistic.

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Overall	count	2117	2117	2117	2117	2117	2117	2117	2116	2116
BIAS	Unadjusted	10 th Percentile	-0.0311	-0.0757	-0.0420	-0.2416	-0.0299	-0.0884	-0.0800	-0.0932	-0.0080
BIAS	Unadjusted	Median	-0.0028	-0.0305	-0.0126	-0.0553	-0.0038	-0.0395	-0.0339	-0.0271	0.0248
BIAS	Unadjusted	Mean	-0.0009	-0.0343	-0.0141	-0.0805	-0.0053	-0.0440	-0.0381	-0.0348	0.0934
BIAS	Unadjusted	90 th Percentile	0.0292	-0.0005	0.0055	0.0222	0.0162	-0.0064	-0.0040	0.0149	0.1489
BIAS	Additive Adj	10 th Percentile	-0.0053	-0.0202	-0.0139	-0.1140	-0.0136	-0.0192	-0.0170	-0.0387	-0.0287
BIAS	Additive Adj	Median	0.0080	-0.0004	0.0029	-0.0130	0.0038	0.0000	0.0000	-0.0003	0.0084
BIAS	Additive Adj	Mean	0.0110	-0.0009	0.0034	-0.0092	0.0040	-0.0014	-0.0004	0.0119	0.0274
BIAS	Additive Adj	90 th Percentile	0.0321	0.0179	0.0217	0.0983	0.0215	0.0171	0.0172	0.0400	0.0622
BIAS	Multiplicative Adj	10 th Percentile	-0.0042	-0.0172	-0.0083	-0.1140	-0.0088	-0.0177	-0.0166	-0.0325	-0.0185
BIAS	Multiplicative Adj	Median	0.0092	0.0009	0.0070	-0.0130	0.0070	0.0008	0.0006	0.0024	0.0118
BIAS	Multiplicative Adj	Mean	0.0141	0.0030	0.0519	-0.0092	0.0628	0.0003	0.0010	0.0164	0.0355
BIAS	Multiplicative Adj	90 th Percentile	0.0379	0.0238	0.0424	0.0983	0.0360	0.0197	0.0193	0.0565	0.0792
BIAS	Capped Adjustment	10 th Percentile	-0.0143	-0.0447	-0.0246	-0.1556	-0.0287	-0.0448	-0.0465	-0.0817	-0.0134
BIAS	Capped Adjustment	Median	0.0053	-0.0074	-0.0028	-0.0358	0.0012	-0.0063	-0.0065	-0.0106	0.0138
BIAS	Capped Adjustment	Mean	0.0070	-0.0124	-0.0038	-0.0418	-0.0024	-0.0124	-0.0127	-0.0240	0.0631
BIAS	Capped Adjustment	90 th Percentile	0.0291	0.0102	0.0135	0.0539	0.0180	0.0106	0.0093	0.0197	0.0918

Table 24 Baseline Bias: Distribution Statistics

2.2.2 Customer Size

Table 25 presents the absolute value of the baseline bias statistics ranked by size category. Once again, green indicates "good". For the bias statistic most (104 out of 140) of the weekday baselines have a median bias under 1%. For the weekend, the middle 2 of 4 (M2of4) outperforms the high 2 of 3 (H2of3).

Size Category	Baseline Type	PJN1H4 OF S	Middle 4 of 6	PIN Comp Day	PIN _{S^{ame Day}}	PIN Weathsens	ls Our	C4ISO 20 OF 20	West	Weekend Nr2 of a	WeekendH2 of 3	
Un 4n 175	Unadjusted Baseline	0.004	0.019	0.006	0.025	0.003	0.026	0.020	ds	0.021	0.019	
Up to 175	Additive Adjustment	0.009	0.001	0.001	0.026	0.004	0.001	0.000	enc	0.000	0.012	
(n=2.184)	Multiplicative Adjustment	0.010	0.001	0.005	0.026	0.007	0.001	0.001	eek	0.004	0.015	
. , - ,	Multiplicative Adjustment (Cap)	0.008	0.004	0.001	0.040	0.002	0.004	0.003	Ň	0.005	0.014	
	Unadjusted Baseline	0.003	0.031	0.013	0.053	0.004	0.040	0.033	р	0.029	0.024	
1/5 kW to	Additive Adjustment	0.008	0.001	0.002	0.017	0.004	0.001	0.000	ker	0.001	0.010	
(n=1.355)	Multiplicative Adjustment	0.010	0.000	0.007	0.017	0.008	0.000	0.000	/ee	0.002	0.014	
(1)000)	Multiplicative Adjustment (Cap)	0.006	0.008	0.003	0.041	0.002	0.008	0.007	\$	0.012	0.015	
	Unadjusted Baseline	0.004	0.031	0.012	0.075	0.003	0.041	0.036	p	0.025	0.028	
500 to	Additive Adjustment	0.008	0.000	0.004	0.004	0.003	0.001	0.001	ker	0.001	0.008	
(n=471)	Multiplicative Adjustment	0.009	0.001	0.008	0.004	0.006	0.002	0.001	/ee	0.004	0.009	
(Multiplicative Adjustment (Cap)	0.005	0.007	0.003	0.032	0.000	0.006	0.006	>	0.011	0.012	
	Unadjusted Baseline	0.000	0.019	0.008	0.024	0.003	0.028	0.030	p	0.017	0.031	
2,000 to	Additive Adjustment	0.006	0.001	0.004	0.009	0.004	0.003	0.001	ken	0.001	0.001	
(n=141)	Multiplicative Adjustment	0.008	0.003	0.008	0.009	0.006	0.003	0.002	ee	0.003	0.003	
(11-1+1)	Multiplicative Adjustment (Cap)	0.006	0.003	0.003	0.018	0.001	0.000	0.005	3	0.005	0.008	
	Unadjusted Baseline	0.017	0.000	0.013	0.012	0.013	0.017	0.013	þ	0.021	0.018	
Over 10,000	Additive Adjustment	0.008	0.001	0.000	0.011	0.003	0.001	0.000	ken	0.000	0.002	
кVV (n=50)	Multiplicative Adjustment	0.009	0.003	0.007	0.011	0.002	0.002	0.003	/ee	0.001	0.005	
(1-50)	Multiplicative Adjustment (Cap)	0.008	0.002	0.004	0.010	0.015	0.000	0.001	3	0.003	0.005	

Table 25 Baseline Bias: Segmented by Customer Size

Color coded, green = good, ranked within size category. Weekend baselines are color coded independently.

2.2.3 Weather Sensitivity

Table 26 presents the absolute values of the median bias estimates segmented by weather sensitivity. Many of the baselines perform very well with a median bias of less than 1%.

Weath Sens?	Baseline Type	P.IN H4 OF S	^{Nniddle 4} of 6	P.M.Comp.Day	P.M.S. ^{ame Da} V	P.M. WeathSens	^{ISONE}	C4150 10 01 10	Weel	Weekend NIZ of 4	Weekend H2 or 3	
	Unadjusted Baseline	0.002	0.019	0.009	0.033	0.003	0.025	0.022	р	0.018	0.026	
No	Additive Adjustment	0.007	0.000	0.003	0.000	0.002	0.001	0.001	ker	0.000	0.005	
(n=992)	Multiplicative Adjustment	0.008	0.001	0.006	0.000	0.005	0.001	0.001	/ee	0.001	0.008	
	Multiplicative Adjustment (Cap)	0.005	0.003	0.002	0.010	0.000	0.001	0.003	3	0.006	0.011	
	Unadjusted Baseline	0.008	0.042	0.017	0.083	0.005	0.053	0.044	p	0.037	0.024	
Yes	Additive Adjustment	0.009	0.001	0.003	0.029	0.005	0.001	0.000	ker	0.000	0.011	
(n=1,125)	Multiplicative Adjustment	0.011	0.001	0.008	0.029	0.009	0.001	0.000	/ee	0.005	0.016	
	Multiplicative Adjustment (Cap)	0.005	0.013	0.004	0.063	0.002	0.012	0.011	>	0.015	0.016	

Table 26 Baseline Bias: Weather Sensitivity

Color coded, green = good, ranked within weather sensitivity category. Weekend baselines are color coded independently.

2.2.4 Load Variability

Table 27 presents the absolute value of the median bias based on load variability. The low variability category is the lower quartile (i.e., 25% of least variable customers), the medium category represents the inner quartile range (i.e., from 25% to 75%) and the high category represents the top 25% most variable customers. Even for the most variable load customers, a number of the baseline performed quite well, i.e., less than 1% bias. The ISONE, CAISO, and Middle 4of6 with an additive or multiplicative adjustment were all less than the 1% threshold.

Table 27 Baseline Bias: Load Variability

Var	Baseline Type	PIINH4 OF S	Middle 4 of 6	PIN Comp Day	PINS ^{ame Da} V	PJM WeathSens	^{IS} ONE	C4/50 10 of 10	Walt	Weekend M2 of A	Weekend H2 of 3	
	Unadjusted Baseline	0.002	0.020	0.010	0.043	0.002	0.028	0.021	p	0.021	0.012	
Low	Additive Adjustment	0.006	0.000	0.002	0.025	0.003	0.000	0.000	ken	0.000	0.004	
(n=624)	Multiplicative Adjustment	0.007	0.001	0.003	0.025	0.005	0.001	0.001	/ee	0.001	0.006	
	Multiplicative Adjustment (Cap)	0.006	0.001	0.000	0.034	0.004	0.001	0.000	\$	0.003	0.006	
	Unadjusted Baseline	0.005	0.037	0.015	0.070	0.006	0.048	0.042	ō	0.031	0.031	
Med	Additive Adjustment	0.008	0.001	0.003	0.008	0.004	0.000	0.000	ken	0.000	0.011	
(n=1,250)	Multiplicative Adjustment	0.010	0.001	0.008	0.008	0.008	0.000	0.000	ee	0.003	0.016	
	Multiplicative Adjustment (Cap)	0.004	0.012	0.005	0.041	0.000	0.010	0.011	3	0.015	0.019	
	Unadjusted Baseline	0.004	0.045	0.011	0.050	0.001	0.056	0.058	σ	0.042	0.070	
High	Additive Adjustment	0.020	0.004	0.013	0.031	0.008	0.004	0.005	ken	0.002	0.022	
(n=243)	Multiplicative Adjustment	0.025	0.006	0.033	0.031	0.024	0.003	0.003	ee	0.009	0.031	
	Multiplicative Adjustment (Cap)	0.010	0.028	0 008	0.009	0.011	0 024	0.032	3	0.036	0.028	

Color coded, green = good, rank rows within category. Weekend baselines are color coded independently.

2.2.5 Geographic Region

Table 28 presents the absolute value of the median bias statistic by geographic region. The north is represented by Queensland with all other regions aggregated together to represent the South. Most of the weekday baselines are under the 1% threshold. Once again, the weekend M2of4 outperformed the weekend H2of3.

Region	Baseline Type	PIN H4 OF C	^{Iniddle 4} 05.	PIM Comp.	Veu Same C	Apro Ment	ISONE	Calso Joor	Meer . 10	Weetend has	Weekend L.	n2 or 3
1=North	Unadjusted Baseline	0.003	0.026	0.005	0.053	0.002	0.036	0.029	P	0.019	0.028	
1=North	Additive Adjustment	0.009	0.001	0.004	0.014	0.004	0.002	0.001	ş	0.003	0.009	
1=North	Multiplicative Adjustment	0.010	0.002	0.007	0.014	0.007	0.003	0.001	/ee	0.006	0.011	
1=North	Multiplicative Adjustment (Cap)	0.008	0.003	0.001	0.037	0.002	0.001	0.003	>	0.007	0.013	
2=South	Unadjusted Baseline	0.003	0.034	0.019	0.056	0.005	0.042	0.037	σ	0.034	0.023	
2=South	Additive Adjustment	0.008	0.001	0.002	0.013	0.004	0.001	0.000	ken	0.002	0.008	
2=South	Multiplicative Adjustment	0.009	0.000	0.007	0.013	0.007	0.001	0.000	ee,	0.001	0.012	
2=South	Multiplicative Adjustment (Cap)	0.003	0.010	0.004	0.036	0.001	0.010	0.009	>	0.012	0.014	

Table 28 Baseline Bias: Geographic Region

Color coded, green = good, rank over all rows within Region. Weekend baselines are color coded independently.

2.2.6 Observations

The following observations were made with respect to the Bias statistic:

- While most of the baselines performed adequately with regard to bias, the same four baselines that showed superior performance with regard to accuracy also performed well with regard to bias. The four high performers included:
 - PJM H4of5,
 - Middle 4of6,
 - ISONE, and
 - CAISO 10of10;
- Adjustment mechanisms improved the performance of the unadjusted baseline with regard to bias;
- The Weekend M2of4 consistently outperformed the Weekend H2of3; and
- Segmentation had no discernible effect on the selection of high performing baselines.

2.3 Variability

The third baseline attribute analysed was **variability**, or how well the baseline does at predicting half hourly load under many different conditions and across many different customers. For example, two baselines may have the same RRMSE, but one baseline may be able to better estimate half hourly load across a wider variety of situations such that the dispersion of errors is much closer to actual load than the other baseline. In other words, one baseline may estimate the load shapes more closely than the other baseline. The variability measurement chosen was the relative error ratio (RER), which is the standard deviation of the baseline's prediction errors expressed as a fraction of average load. The smaller the median RER, the less variable a baseline's error is for the typical customer and therefore the better the baseline performs across a wide variety of circumstances.

It should be noted that the accuracy, bias and variability were all calculated for the 10th percentile, median, mean and 90th percentile for each baseline method within each segment. This allows for a detailed analysis of the different baselines across a wide variety of circumstances to get a thorough understanding of how well each baseline estimates a customer actual half hourly load. The 10th percentile in effect illustrates an expected "top" case performance scenario while the 90th percentile illustrates a "bottom" case performance scenario so an analyst can understand the range of expected outcomes for the various metrics.

2.3.1 Overall

Table 37 presents the overall comparison of the variability metric among the baselines. Similar to the discussion represented above for accuracy and bias, the use of an adjustment mechanism provides a significant reduction in the variability of the CBL performance making it a better estimator. Again, the X of Y approaches are all comparable, with the CAISO and ISONE performing slightly better.

Baseline Type	P.In Ha OF	Middle 4 06	P.In Comp.	Punsame C	PIN Weath	ISONE	Calso tone	Week 1.10	Weekend no	Weekend L.	5 JO 21.
Unadjusted Baseline	0.142	0.146	0.144	0.102	0.141	0.140	0.144	s	0.182	0.191	
Additive Adjustment	0.106	0.107	0.126	0.120	0.122	0.101	0.103	end	0.133	0.139	
Multiplicative Adjustment	0.108	0.109	0.131	0.120	0.127	0.100	0.102	sek.	0.136	0.137	
Multiplicative Adjustment (Cap)	0.110	0.113	0.135	0.115	0.125	0.104	0.107	š	0.140	0.143	

 Table 29 Variability of Baselines: Overall

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

Table 30 presents distribution statistics for the variability statistic. The distribution statistics include the 10^{th} , 50^{th} (Median), and 90^{th} percentiles along with the mean. For the ISONE baseline with additive adjustment, the median variability statistic was 10.1% with a 10^{th} percentile of 4.8% and a 90^{th} percentile of 21.8%.

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Overall	count	2117	2117	2117	2117	2117	2117	2117	2116	2116
VARIABILITY	Unadjusted	10 th Percentile	0.0690	0.0704	0.0734	0.0496	0.0698	0.0689	0.0715	0.0795	0.0794
VARIABILITY	Unadjusted	Median	0.1424	0.1457	0.1443	0.1024	0.1411	0.1396	0.1444	0.1824	0.1914
VARIABILITY	Unadjusted	Mean	0.1616	0.1652	0.1653	0.1262	0.1801	0.1594	0.1635	0.2555	0.4074
VARIABILITY	Unadjusted	90 th Percentile	0.2812	0.2899	0.2875	0.2414	0.3628	0.2794	0.2865	0.4708	0.5350
VARIABILITY	Additive Adj	10 th Percentile	0.0504	0.0508	0.0613	0.0595	0.0586	0.0478	0.0484	0.0554	0.0578
VARIABILITY	Additive Adj	Median	0.1061	0.1065	0.1263	0.1200	0.1222	0.1010	0.1029	0.1328	0.1391
VARIABILITY	Additive Adj	Mean	0.1260	0.1269	0.1499	0.1446	0.1489	0.1198	0.1212	0.2249	0.2379
VARIABILITY	Additive Adj	90 th Percentile	0.2279	0.2294	0.2752	0.2668	0.2794	0.2176	0.2210	0.4049	0.4345
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0507	0.0509	0.0629	0.0595	0.0594	0.0479	0.0486	0.0564	0.0581
VARIABILITY	Multiplicative Adj	Median	0.1081	0.1086	0.1309	0.1200	0.1272	0.1004	0.1025	0.1355	0.1371
VARIABILITY	Multiplicative Adj	Mean	0.1305	0.1341	0.4901	0.1446	0.5180	0.1206	0.1226	0.2316	0.2471
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2343	0.2397	0.3162	0.2668	0.3204	0.2190	0.2247	0.4191	0.4333
VARIABILITY	Capped Adjustment	10 th Percentile	0.0521	0.0528	0.0687	0.0598	0.0611	0.0485	0.0502	0.0584	0.0596
VARIABILITY	Capped Adjustment	Median	0.1098	0.1129	0.1346	0.1153	0.1255	0.1041	0.1073	0.1399	0.1432
VARIABILITY	Capped Adjustment	Mean	0.1296	0.1338	0.1551	0.1356	0.1594	0.1233	0.1270	0.2111	0.3272
VARIABILITY	Capped Adjustment	90 th Percentile	0.2357	0.2461	0.2728	0.2440	0.3209	0.2252	0.2355	0.4067	0.4371

Table 30 Variability: Overall Distribution Statistics

2.3.2 Customer Size

Table 31 presents a summary of the variability statistic segmented by customer size. The tables are conditionally formatted within size category to highlight the baseline that performs the best for each size classification. The same four baselines identified earlier, namely ISONE, CAISO, H4of5, and M4of6, continue to perform well. Interestingly, the PJM Same Day unadjusted baseline performed the best for the largest customers.

Size Category	Baseline Type	P.In. Ha of S	Middle 4 of 6	P.IN Comp Day	PINS ^{ame Da} L	P.In WeathSens	^{ISONE}	C4150 10 of 10	We	Weekend M2 of 4	Weekend H2 or 3	
	Unadjusted Baseline	0.133	0.134	0.127	0.100	0.134	0.130	0.132	ş	0.157	0.159	
Up to 175	Additive Adjustment	0.109	0.108	0.129	0.119	0.128	0.102	0.104	ence	0.127	0.130	
(n=2.184)	Multiplicative Adjustment	0.112	0.112	0.135	0.119	0.135	0.105	0.107	-	0.132	0.133	
() -)	Multiplicative Adjustment (Cap)	0.110	0.111	0.128	0.111	0.129	0.104	0.106	ž	0.129	0.131	
	Unadjusted Baseline	0.144	0.146	0.144	0.102	0.136	0.140	0.145	g	0.185	0.193	
175 kW to	Additive Adjustment	0.108	0.108	0.128	0.122	0.121	0.102	0.104	ken	0.137	0.143	
(n=1 355)	Multiplicative Adjustment	0.110	0.111	0.133	0.122	0.127	0.102	0.104	/ee	0.139	0.141	
(1)000)	Multiplicative Adjustment (Cap)	0.110	0.113	0.135	0.117	0.124	0.104	0.108	5	0.142	0.145	
5 00 ·	Unadjusted Baseline	0.139	0.142	0.143	0.104	0.144	0.132	0.138	þ	0.180	0.195	
500 to	Additive Adjustment	0.103	0.104	0.122	0.119	0.123	0.097	0.099	ken	0.130	0.139	
2,000 KW (n=471)	Multiplicative Adjustment	0.102	0.104	0.128	0.119	0.125	0.097	0.097	/ee	0.133	0.136	
(Multiplicative Adjustment (Cap)	0.105	0.109	0.133	0.112	0.126	0.100	0.102	\$	0.138	0.146	
	Unadjusted Baseline	0.136	0.143	0.143	0.102	0.169	0.143	0.148	ō	0.170	0.181	
2,000 to	Additive Adjustment	0.094	0.100	0.119	0.111	0.116	0.093	0.092	ken	0.106	0.113	
10,000 KW (n=141)	Multiplicative Adjustment	0.098	0.098	0.128	0.111	0.124	0.093	0.093	lee	0.110	0.114	
(Multiplicative Adjustment (Cap)	0.107	0.114	0.131	0.108	0.144	0.100	0.107	\$	0.131	0.132	
	Unadjusted Baseline	0.183	0.192	0.194	0.100	0.247	0.196	0.192	σ	0.172	0.174	
Over 10,000	Additive Adjustment	0.131	0.135	0.158	0.127	0.178	0.122	0.126	ken	0.109	0.106	
кvv (n=50)	Multiplicative Adjustment	0.132	0.137	0.164	0.127	0.194	0.124	0.128	/ee	0.108	0.102	
(11-30)	Multiplicative Adjustment (Cap)	0.141	0.144	0.159	0.121	0.216	0.139	0.141	\$	0.135	0.116	

Table 31 Variability: Segmented by Customer Size

Color coded, green = good, rank over rows within size category. Weekend baselines are color coded independently.

2.3.3 Weather Sensitivity

Table 32 presents a summary of the median variability statistics based on weather sensitivity. As expected the non-weather sensitive loads are less variable than the weather sensitive loads. But the adjustment mechanisms do a good job of helping to reduce the variability. The same four weekday baselines continue to perform well. And, the Weekend M2of4 outperforms the alternative.

w s	/eath ens?	Baseline Type	P.In Ha OF C	Middle 4 0.6	P.In Comp.	Vec.	P.In Weath.	ISONE	Calso 20 of .	Weel	Weekend .	Weekend Li	n2 or 3
		Unadjusted Baseline	0.121	0.124	0.127	0.092	0.140	0.117	0.120	g	0.151	0.155	
	No	Additive Adjustment	0.098	0.099	0.116	0.110	0.121	0.093	0.094	ken	0.118	0.120	
(n	=992)	Multiplicative Adjustment	0.099	0.099	0.121	0.110	0.126	0.093	0.095	/ee	0.120	0.120	
		Multiplicative Adjustment (Cap)	0.100	0.103	0.123	0.104	0.127	0.094	0.097	\$	0.124	0.127	
		Unadjusted Baseline	0.159	0.161	0.152	0.110	0.142	0.155	0.159	ō	0.206	0.213	
	Yes	Additive Adjustment	0.112	0.113	0.134	0.131	0.123	0.106	0.108	ken	0.145	0.152	
(n=	=1,125)	Multiplicative Adjustment	0.114	0.115	0.139	0.131	0.127	0.106	0.108	/ee	0.146	0.149	
		Multiplicative Adjustment (Cap)	0.117	0.120	0.140	0.126	0.125	0.108	0.113	\$	0.150	0.157	

Table 32 Variability: Weather Sensitivity

Color coded, green = good, ranked within weather sensitivity category. Weekend baselines are color coded independently.

2.3.4 Load Variability

Table 33 presents the median variability statistic for the three customer classifications based on whether or not the customer had variable load. As expected, the variability statistics increases as we go from low variable load (6-10% range) customers to high variable load customers (20-40% range).

Table 33 Variability: Load Variability

Var	Baseline Type	PIN H4 OF	Middle 4 of	PIM Como 2	Veu Same C	Aer Weard	ISONE USE	C4150 10 05.	Weer 120	Weekend a.	Meekend H.	5 40 Zu.
	Unadjusted Baseline	0.090	0.090	0.092	0.061	0.081	0.087	0.089	p	0.114	0.112	
Low	Additive Adjustment	0.068	0.068	0.082	0.073	0.074	0.064	0.065	Ę	0.080	0.083	
(n=624)	Multiplicative Adjustment	0.069	0.070	0.084	0.073	0.076	0.064	0.066	/ee	0.083	0.084	
	Multiplicative Adjustment (Cap)	0.068	0.069	0.088	0.073	0.074	0.064	0.065	5	0.080	0.082	
	Unadjusted Baseline	0.160	0.164	0.161	0.118	0.164	0.157	0.161	g	0.208	0.215	
Med	Additive Adjustment	0.122	0.124	0.144	0.141	0.140	0.116	0.118	ken	0.150	0.156	
(n=1,250)	Multiplicative Adjustment	0.124	0.126	0.147	0.141	0.146	0.115	0.118	ee	0.152	0.155	
	Multiplicative Adjustment (Cap)	0.126	0.130	0.149	0.132	0.146	0.118	0.123	3	0.157	0.162	
	Unadjusted Baseline	0.287	0.297	0.288	0.227	0.419	0.296	0.301	ō	0.365	0.388	
High	Additive Adjustment	0.229	0.230	0.278	0.271	0.294	0.221	0.223	ken	0.307	0.320	
(n=243)	Multiplicative Adjustment	0.232	0.239	0.300	0.271	0.319	0.219	0.225	/ee	0.315	0.319	
	Multiplicative Adjustment (Cap)	0.248	0.261	0.278	0.242	0.358	0.240	0.255	\$	0.325	0.330	

Color coded, green = good, rank rows within category. Weekend baselines are color coded independently.

2.3.5 Geographic Region

Table 34 presents a summary of the median of the variability statistic by geographic region. The load in the north seems slightly less variable than the load in the south. Once again, the same four candidate weekday baselines performed very well with the weekend M2of4 outperforming the alternative weekend.

Region	Baseline Type	^D IIA H4 OF C	Middle 4 of	PIM COMIN	Veu~	PIM Weath	SONE THE	Calso 10 of JC	Weetend 10 Weetend	Weekend L.	e 10 21
1=North	Unadjusted Baseline	0.121	0.124	0.127	0.092	0.120	0.121	0.125	0.18	3 0.192	
1=North	Additive Adjustment	0.090	0.091	0.111	0.100	0.107	0.084	0.087	9 0.13	2 0.138	
1=North	Multiplicative Adjustment	0.091	0.092	0.114	0.100	0.111	0.085	0.087	e 0.13	5 0.136	
1=North	Multiplicative Adjustment (Cap)	0.095	0.095	0.124	0.097	0.110	0.088	0.091	< <u>0.14</u>	1 0.142	
2=South	Unadjusted Baseline	0.156	0.157	0.153	0.109	0.153	0.151	0.156	0 .18	2 0.191	
2=South	Additive Adjustment	0.117	0.117	0.138	0.133	0.133	0.110	0.112	9 0.13	4 0.141	
2=South	Multiplicative Adjustment	0.116	0.118	0.142	0.133	0.135	0.109	0.111	0.13	6 0.138	
2=South	Multiplicative Adjustment (Cap)	0.119	0.122	0.141	0.127	0.136	0.111	0.116	3 0.13	9 0.144	

Table 34 Variability: Segmented by Region

Color coded, green = good, rank over all rows within Region. Weekend baselines are color coded independently.

2.3.6 Observations

The following observations were made with respect to the variability statistic:

- The same four baselines that showed superior performance with regard to accuracy and bias also performed well with regard to variability. The four high performers included:
 - PJM H4of5,
 - Middle 4of6,
 - ISONE, and
 - CAISO 10of10;
- Adjustment mechanisms improved the performance of the unadjusted baseline with regard to variability;
- The Weekend M2of4 consistently outperformed the Weekend H2of3; and
- Segmentation had no discernible effect on the selection of high performing baselines.

2.4 Additional Analyses

During the course of the project, AEMO and DNV KEMA staff met regularly to review the preliminary results. As a result of these meetings additional analyses were conducted to examine the veracity of the estimates. Some of the additional analyses (e.g., selected results for customers with a maximum demand less than 175 kW) were included in the main body of this report while others are included in separate appendices. The additional analyses included:

- Analysed customers that had a 2012 peak demand less than the threshold peak of 175 kW;
- Analysed customers that were excluded due to highly variable load, i.e., the top 15% of variable load customers;
- Expanded the base analyses to include the additional half-hours ending at 7pm.

2.5 High Variable Load Customers

In the analyses the project team noted that high variable load customers did not perform particularly well. This result is consistent with work completed for PJM. In PJM, high variable load customers are identified based on their relative root mean square error (RRMSE) during the targeted event period looking back 60 days²⁴. If the customer has an RRMSE greater than 20% (i.e., 0.20) then the customers

²⁴ PJM Manual 11: Energy & Ancillary Services Market Operations, Revision 62, August 30, 2013

are labelled as "high variable load" customers and handled separately. We conducted a similar analysis on the full sample of customers. For this analysis we selected January 1, 2013 through March 31, 2013 as the test period and examined the RRMSE during the 1pm to 5pm event period for each of the three candidate baselines, i.e., CAISO, PJM (M4of6), and PJM (H4of5). Table 35 presents the distribution statistics for the RRMSE across the full sample. All three baselines display similar characteristics and would identify (and exclude) approximately the top 25% of as high variable load customers.

		PJM	PJM
Quantile	CALISO	M40f6	H4of5
99%	1.205	1.227	1.206
95%	0.585	0.597	0.585
90%	0.361	0.371	0.372
75% Q3	0.195	0.202	0.201
50% Median	0.119	0.124	0.123
25% Q1	0.075	0.080	0.079
10%	0.051	0.054	0.053
5%	0.039	0.041	0.041
1%	0.021	0.021	0.021

3. Recommendations

This selection summarizes the recommendations of the project team. Selection of an appropriate CBL must consider the results of the empirical analysis, the expected administrative costs, and any other known issues based on the previous practical experience of other ISOs.

- Utilizing an additive adjustment is recommended. The analysis clearly indicates that a same day additive or multiplicative adjustment has superior performance to an unadjusted CBL or a CBL using the PJM weather sensitive adjustment. The decision of whether to use a multiplicative or additive adjustment is fairly arbitrary because the impact on the performance metrics is not significant. However, due to a somewhat greater susceptibility of multiplicative adjustments to gross inaccuracies under certain demand conditions, we recommend that an additive adjustment be utilized.
- Highly variable load customers should be segmented for purposes of applying a different CBL. The ISONE and the X of Y CBLs (i.e., CAISO, PJM economic and mid 4 of 6) with a same day additive adjustment have similar results and performed well across all segments, time periods and weather conditions, except for predicting loads for highly variable load customers. It is therefore recommended that variable load customers be segmented for the purposes of applying a different CBL and/or market rule. Here again, some guidance can be gained from PJM and their "simplified" approach of using a "maximum base load" method, i.e., the average minimum load during the event window for the previous five weekdays.
- Administrative and other factors are important considerations in the final determination of a CBL or CBLs. Since the empirical results for non-variable load customers are similar, it is important to understand the administrative cost and other factors in the final decision. Table 36 presents a comparison of the four approaches.

Table 36 Summary of Results for Likely Event Weekdays, all Sizes of Customers, for All Weather Customers, with Non-Variable Load

Baseline	Accuracy	Bias	Variability	Administration	Strategic behaviour
ISONE w/additive adjustment	10%	0%	10%	Requires continuous meter data, difficult to make calculation transparent, admin for adjustments	Impact of pre-cooling ²⁵
CAISO w/additive adjustment	10%	0%	10%	Requires 10 non-event days	Impact of pre-cooling
PJM economic w/additive adjustment	11%	1%	11%	Requires limited load data based on specific reductions (5 non-event days, will use 4 if necessary) Currently implemented & minimum changes	Impact of pre-cooling Specific limit on how far to go back for CBL days (avoid issue with frequent settlements forcing outdated CBL days)
Middle 4 of 6 w/additive adjustment	11%	0%	11%	Requires 6 days (assumes same rules used for PJM economic CBL will be used)	Impact of pre-cooling Specific limit on how far to go back for CBL days (avoid issue with frequent settlements forcing outdated CBL days)

- The ISONE CBL, has slightly better empirical performance than the other methods, however, it entails significantly more administrative costs. The higher administrative costs are driven from the requirement of contiguous load data (since each baseline is based on the prior day's baseline). This approach also requires additional administration to ensure transparency to all market participants, and requires significantly more administration for settlement adjustments that result in corrections in load data. Since the empirical performance of the ISONE baseline is only marginally better than that of the remaining two, it is not apparent that this additional administrative effort is warranted and therefore is not recommended.
- The remaining three CBLs, the PJM economic, the middle 4 of 6, and the CAISO are reasonably similar in terms of empirical performance and ease of administration. We should note that the CAISO approach requires nearly twice the load data to provide similar results to the remaining two. Also, the true impact of customers that have frequent DR events has not been considered in this analysis. This issue may have a bigger impact on the CAISO baseline since it requires more days to be selected (as more event days occur, more days closer to the event are skipped which results in the use of days further from the event day). Therefore we would recommend consideration be given to one of the two remaining PJM identified approaches.
- We recommend implementing DRM using two baseline methodologies to start. Since AEMO is just launching their demand response market, the project team believes that it is appropriate to start simple and gain some practical experience before opening up the market to a wider array of baseline offerings. Therefore, we are recommending starting with a single

²⁵ Customer would need to significantly increase load for 3 hours, 4 hour prior to event, only on event days, to have impact.

weekday baseline and a single weekend baseline (both using the additive adjustment). There are three viable candidates for the weekday baseline, i.e., CAISO, PJM (M4of6) and PJM (H4of5). For the weekend, we recommend the M2of4.

- If multiple baselines are used, then demand response aggregators (DRAs) should be allowed to select the baseline. If AEMO wants to offer more than one baseline, then the experience in other regions that allows the DRA to choose seems to work well and it does not create undue or inappropriate results. It is worth noting that selecting a better performing baseline does not, in and of itself, suggest a gamed result. It may well be the case that the lower performing baseline is unduly depressing the value of the resource because of some inherent load character. Further, where gaming has occurred through the use of unique bidding strategies, for instance, other market monitoring oversight is able to address the issues. Thus, given the costs associated with creating infrastructure and capabilities that would be new to AEMO and otherwise unnecessary in order to assign baselines to specific loads on a case by case basis, allowing DRAs to select the baseline is a reasonable and cost effective approach when combined with overall market monitoring for inappropriate behaviour.
- We support the use of unscheduled DRM in NEM. As indicated in the previous table, precooling, while justified operationally, can cause an artificially higher baseline than normal when an adjusted CBL scenario is employed. The use of unscheduled demand response in NEM will help mitigate this concern.
- Scalability of systems and processes related to the administration of the CBLs should be considered. Other ISOs have used simple approaches including spreadsheet based solutions for their pilots and/or early implementations. Key needs as volume grows are robust databases to capture bidding²⁶ and validation data and some automatic or semi-automatic system for processing the data through the baselines.
- Strategic behaviour in the market to artificially inflate the CBL should not be permitted. Any CBL can be manipulated to the market participant's economic advantage, and it is recommended that rules be established to identify and mitigate this behaviour. The opportunity to conduct this activity increases when the reduction event is announced well in advance of the start of the event; there is no ongoing oversight to identify and review activity; and the market participants can determine exactly when they need to respond.

²⁶ AEMO does not anticipate allowing bidding into the DRM initially.

A. Appendix – Distribution Statistics (Hours 1-5pm)

The following tables present the distribution characteristics for each statistic for each baseline and baseline variant.

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Overall	count	2117	2117	2117	2117	2117	2117	2117	2116	2116
BIAS	Unadjusted	10 th Percentile	-0.0311	-0.0757	-0.0420	-0.2416	-0.0299	-0.0884	-0.0800	-0.0932	-0.0080
BIAS	Unadjusted	Median	-0.0028	-0.0305	-0.0126	-0.0553	-0.0038	-0.0395	-0.0339	-0.0271	0.0248
BIAS	Unadjusted	Mean	-0.0009	-0.0343	-0.0141	-0.0805	-0.0053	-0.0440	-0.0381	-0.0348	0.0934
BIAS	Unadjusted	90 th Percentile	0.0292	-0.0005	0.0055	0.0222	0.0162	-0.0064	-0.0040	0.0149	0.1489
BIAS	Additive Adj	10 th Percentile	-0.0053	-0.0202	-0.0139	-0.1140	-0.0136	-0.0192	-0.0170	-0.0387	-0.0287
BIAS	Additive Adj	Median	0.0080	-0.0004	0.0029	-0.0130	0.0038	0.0000	0.0000	-0.0003	0.0084
BIAS	Additive Adj	Mean	0.0110	-0.0009	0.0034	-0.0092	0.0040	-0.0014	-0.0004	0.0119	0.0274
BIAS	Additive Adj	90 th Percentile	0.0321	0.0179	0.0217	0.0983	0.0215	0.0171	0.0172	0.0400	0.0622
BIAS	Multiplicative Adj	10 th Percentile	-0.0042	-0.0172	-0.0083	-0.1140	-0.0088	-0.0177	-0.0166	-0.0325	-0.0185
BIAS	Multiplicative Adj	Median	0.0092	0.0009	0.0070	-0.0130	0.0070	0.0008	0.0006	0.0024	0.0118
BIAS	Multiplicative Adj	Mean	0.0141	0.0030	0.0519	-0.0092	0.0628	0.0003	0.0010	0.0164	0.0355
BIAS	Multiplicative Adj	90 th Percentile	0.0379	0.0238	0.0424	0.0983	0.0360	0.0197	0.0193	0.0565	0.0792
BIAS	Capped Adjustment	10 th Percentile	-0.0143	-0.0447	-0.0246	-0.1556	-0.0287	-0.0448	-0.0465	-0.0817	-0.0134
BIAS	Capped Adjustment	Median	0.0053	-0.0074	-0.0028	-0.0358	0.0012	-0.0063	-0.0065	-0.0106	0.0138
BIAS	Capped Adjustment	Mean	0.0070	-0.0124	-0.0038	-0.0418	-0.0024	-0.0124	-0.0127	-0.0240	0.0631
BIAS	Capped Adjustment	90 th Percentile	0.0291	0.0102	0.0135	0.0539	0.0180	0.0106	0.0093	0.0197	0.0918

Table 37 Bias (Overall): Distribution Statistics

Table 38 Accuracy (Overall): Distribution Statistics

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Overall	count	2117	2117	2117	2117	2117	2117	2117	2116	2116
ACCURACY	Unadjusted	10 th Percentile	0.0695	0.0723	0.0741	0.0603	0.0700	0.0738	0.0740	0.0820	0.0819
ACCURACY	Unadjusted	Median	0.1433	0.1511	0.1457	0.1405	0.1417	0.1485	0.1506	0.1872	0.1965
ACCURACY	Unadjusted	Mean	0.1633	0.1708	0.1678	0.1705	0.1810	0.1679	0.1699	0.2614	0.4195
ACCURACY	Unadjusted	90 th Percentile	0.2857	0.2965	0.2892	0.3289	0.3676	0.2910	0.2959	0.4820	0.5589
ACCURACY	Additive Adj	10 th Percentile	0.0511	0.0508	0.0615	0.0670	0.0590	0.0482	0.0486	0.0564	0.0584
ACCURACY	Additive Adj	Median	0.1072	0.1076	0.1270	0.1416	0.1228	0.1015	0.1035	0.1356	0.1412
ACCURACY	Additive Adj	Mean	0.1271	0.1278	0.1505	0.1684	0.1495	0.1207	0.1219	0.2294	0.2436
ACCURACY	Additive Adj	90 th Percentile	0.2289	0.2316	0.2756	0.3068	0.2798	0.2187	0.2226	0.4102	0.4409
ACCURACY	Multiplicative Adj	10 th Percentile	0.0514	0.0514	0.0632	0.0670	0.0599	0.0482	0.0488	0.0573	0.0590
ACCURACY	Multiplicative Adj	Median	0.1091	0.1095	0.1322	0.1416	0.1274	0.1015	0.1030	0.1373	0.1391
ACCURACY	Multiplicative Adj	Mean	0.1320	0.1352	0.4935	0.1684	0.5227	0.1215	0.1234	0.2353	0.2524
ACCURACY	Multiplicative Adj	90 th Percentile	0.2376	0.2426	0.3193	0.3068	0.3242	0.2200	0.2252	0.4271	0.4390
ACCURACY	Capped Adjustment	10 th Percentile	0.0524	0.0535	0.0689	0.0693	0.0617	0.0491	0.0507	0.0592	0.0602
ACCURACY	Capped Adjustment	Median	0.1108	0.1144	0.1351	0.1435	0.1263	0.1056	0.1087	0.1426	0.1451
ACCURACY	Capped Adjustment	Mean	0.1308	0.1357	0.1564	0.1623	0.1602	0.1255	0.1289	0.2152	0.3349
ACCURACY	Capped Adjustment	90 th Percentile	0.2362	0.2510	0.2739	0.2842	0.3215	0.2301	0.2391	0.4168	0.4465

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Overall	count	2117	2117	2117	2117	2117	2117	2117	2116	2116
VARIABILITY	Unadjusted	10 th Percentile	0.0690	0.0704	0.0734	0.0496	0.0698	0.0689	0.0715	0.0795	0.0794
VARIABILITY	Unadjusted	Median	0.1424	0.1457	0.1443	0.1024	0.1411	0.1396	0.1444	0.1824	0.1914
VARIABILITY	Unadjusted	Mean	0.1616	0.1652	0.1653	0.1262	0.1801	0.1594	0.1635	0.2555	0.4074
VARIABILITY	Unadjusted	90 th Percentile	0.2812	0.2899	0.2875	0.2414	0.3628	0.2794	0.2865	0.4708	0.5350
VARIABILITY	Additive Adj	10 th Percentile	0.0504	0.0508	0.0613	0.0595	0.0586	0.0478	0.0484	0.0554	0.0578
VARIABILITY	Additive Adj	Median	0.1061	0.1065	0.1263	0.1200	0.1222	0.1010	0.1029	0.1328	0.1391
VARIABILITY	Additive Adj	Mean	0.1260	0.1269	0.1499	0.1446	0.1489	0.1198	0.1212	0.2249	0.2379
VARIABILITY	Additive Adj	90 th Percentile	0.2279	0.2294	0.2752	0.2668	0.2794	0.2176	0.2210	0.4049	0.4345
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0507	0.0509	0.0629	0.0595	0.0594	0.0479	0.0486	0.0564	0.0581
VARIABILITY	Multiplicative Adj	Median	0.1081	0.1086	0.1309	0.1200	0.1272	0.1004	0.1025	0.1355	0.1371
VARIABILITY	Multiplicative Adj	Mean	0.1305	0.1341	0.4901	0.1446	0.5180	0.1206	0.1226	0.2316	0.2471
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2343	0.2397	0.3162	0.2668	0.3204	0.2190	0.2247	0.4191	0.4333
VARIABILITY	Capped Adjustment	10 th Percentile	0.0521	0.0528	0.0687	0.0598	0.0611	0.0485	0.0502	0.0584	0.0596
VARIABILITY	Capped Adjustment	Median	0.1098	0.1129	0.1346	0.1153	0.1255	0.1041	0.1073	0.1399	0.1432
VARIABILITY	Capped Adjustment	Mean	0.1296	0.1338	0.1551	0.1356	0.1594	0.1233	0.1270	0.2111	0.3272
VARIABILITY	Capped Adjustment	90 th Percentile	0.2357	0.2461	0.2728	0.2440	0.3209	0.2252	0.2355	0.4067	0.4371

Table 39 Variability (Overall): Distribution Statistics

Table 40 Bias (175 kW to 500 kW): Distribution Statistics

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	175 kW to 500 kW	count	1355	1355	1355	1355	1355	1355	1355	1355	1355
BIAS	Unadjusted	10 th Percentile	-0.0317	-0.0779	-0.0418	-0.2419	-0.0280	-0.0900	-0.0796	-0.0949	-0.0074
BIAS	Unadjusted	Median	-0.0034	-0.0313	-0.0133	-0.0529	-0.0038	-0.0402	-0.0332	-0.0293	0.0237
BIAS	Unadjusted	Mean	-0.0023	-0.0361	-0.0142	-0.0766	-0.0051	-0.0453	-0.0384	-0.0361	0.0565
BIAS	Unadjusted	90 th Percentile	0.0256	-0.0030	0.0050	0.0375	0.0150	-0.0090	-0.0045	0.0140	0.1552
BIAS	Additive Adj	10 th Percentile	-0.0053	-0.0203	-0.0140	-0.1260	-0.0117	-0.0201	-0.0179	-0.0401	-0.0260
BIAS	Additive Adj	Median	0.0082	-0.0009	0.0025	-0.0175	0.0042	-0.0006	-0.0005	-0.0008	0.0101
BIAS	Additive Adj	Mean	0.0111	-0.0017	0.0029	-0.0132	0.0047	-0.0027	-0.0012	0.0127	0.0291
BIAS	Additive Adj	90 th Percentile	0.0321	0.0177	0.0215	0.0996	0.0212	0.0163	0.0166	0.0400	0.0627
BIAS	Multiplicative Adj	10 th Percentile	-0.0042	-0.0178	-0.0093	-0.1260	-0.0074	-0.0185	-0.0167	-0.0341	-0.0155
BIAS	Multiplicative Adj	Median	0.0095	0.0004	0.0067	-0.0175	0.0076	0.0002	0.0000	0.0020	0.0135
BIAS	Multiplicative Adj	Mean	0.0138	0.0014	0.0344	-0.0132	0.0337	-0.0010	0.0001	0.0149	0.0363
BIAS	Multiplicative Adj	90 th Percentile	0.0369	0.0235	0.0381	0.0996	0.0324	0.0193	0.0187	0.0565	0.0807
BIAS	Capped Adjustment	10 th Percentile	-0.0142	-0.0467	-0.0239	-0.1659	-0.0218	-0.0449	-0.0454	-0.0815	-0.0116
BIAS	Capped Adjustment	Median	0.0055	-0.0081	-0.0026	-0.0406	0.0018	-0.0075	-0.0071	-0.0115	0.0150
BIAS	Capped Adjustment	Mean	0.0063	-0.0133	-0.0029	-0.0459	-0.0005	-0.0142	-0.0134	-0.0246	0.0347
BIAS	Capped Adjustment	90 th Percentile	0.0275	0.0101	0.0141	0.0543	0.0184	0.0092	0.0087	0.0186	0.0935

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	175 kW to 500 kW	count	1355	1355	1355	1355	1355	1355	1355	1355	1355
ACCURACY	Unadjusted	10 th Percentile	0.0744	0.0772	0.0775	0.0621	0.0723	0.0777	0.0784	0.0870	0.0842
ACCURACY	Unadjusted	Median	0.1448	0.1512	0.1456	0.1366	0.1366	0.1487	0.1495	0.1890	0.1981
ACCURACY	Unadjusted	Mean	0.1606	0.1677	0.1643	0.1712	0.1698	0.1654	0.1667	0.2638	0.2932
ACCURACY	Unadjusted	90 th Percentile	0.2657	0.2786	0.2743	0.3331	0.3254	0.2794	0.2827	0.4891	0.5906
ACCURACY	Additive Adj	10 th Percentile	0.0552	0.0556	0.0662	0.0712	0.0624	0.0529	0.0537	0.0612	0.0634
ACCURACY	Additive Adj	Median	0.1091	0.1089	0.1281	0.1444	0.1216	0.1031	0.1048	0.1397	0.1456
ACCURACY	Additive Adj	Mean	0.1264	0.1270	0.1488	0.1710	0.1466	0.1203	0.1214	0.2369	0.2463
ACCURACY	Additive Adj	90 th Percentile	0.2197	0.2201	0.2577	0.2995	0.2690	0.2094	0.2111	0.4224	0.4527
ACCURACY	Multiplicative Adj	10 th Percentile	0.0558	0.0560	0.0682	0.0712	0.0637	0.0525	0.0539	0.0626	0.0636
ACCURACY	Multiplicative Adj	Median	0.1114	0.1115	0.1339	0.1444	0.1270	0.1027	0.1047	0.1409	0.1442
ACCURACY	Multiplicative Adj	Mean	0.1294	0.1301	0.3390	0.1710	0.2870	0.1208	0.1223	0.2372	0.2543
ACCURACY	Multiplicative Adj	90 th Percentile	0.2245	0.2237	0.2854	0.2995	0.2931	0.2060	0.2070	0.4296	0.4474
ACCURACY	Capped Adjustment	10 th Percentile	0.0585	0.0593	0.0731	0.0729	0.0662	0.0534	0.0546	0.0625	0.0637
ACCURACY	Capped Adjustment	Median	0.1118	0.1142	0.1349	0.1468	0.1239	0.1063	0.1087	0.1448	0.1486
ACCURACY	Capped Adjustment	Mean	0.1286	0.1329	0.1539	0.1658	0.1526	0.1238	0.1262	0.2174	0.2349
ACCURACY	Capped Adjustment	90 th Percentile	0.2272	0.2352	0.2591	0.2848	0.2876	0.2180	0.2252	0.4207	0.4625

Table 41 Accuracy (175 kW to 500 kW): Distribution Statistics

Table 42 Variability (175 kW to 500 kW): Distribution Statistics

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	175 kW to 500 kW	count	1355	1355	1355	1355	1355	1355	1355	1355	1355
VARIABILITY	Unadjusted	10 th Percentile	0.0733	0.0755	0.0769	0.0516	0.0720	0.0730	0.0763	0.0827	0.0816
VARIABILITY	Unadjusted	Median	0.1436	0.1463	0.1437	0.1023	0.1359	0.1400	0.1449	0.1851	0.1927
VARIABILITY	Unadjusted	Mean	0.1590	0.1621	0.1614	0.1273	0.1689	0.1566	0.1603	0.2580	0.2840
VARIABILITY	Unadjusted	90 th Percentile	0.2631	0.2706	0.2716	0.2415	0.3225	0.2636	0.2701	0.4840	0.5545
VARIABILITY	Additive Adj	10 th Percentile	0.0551	0.0554	0.0654	0.0643	0.0622	0.0525	0.0537	0.0606	0.0628
VARIABILITY	Additive Adj	Median	0.1077	0.1081	0.1277	0.1223	0.1210	0.1023	0.1044	0.1367	0.1431
VARIABILITY	Additive Adj	Mean	0.1252	0.1261	0.1481	0.1452	0.1459	0.1193	0.1207	0.2317	0.2405
VARIABILITY	Additive Adj	90 th Percentile	0.2178	0.2190	0.2570	0.2603	0.2688	0.2076	0.2105	0.4175	0.4514
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0556	0.0559	0.0676	0.0643	0.0636	0.0521	0.0539	0.0619	0.0629
VARIABILITY	Multiplicative Adj	Median	0.1101	0.1107	0.1327	0.1223	0.1266	0.1020	0.1040	0.1385	0.1410
VARIABILITY	Multiplicative Adj	Mean	0.1279	0.1291	0.3364	0.1452	0.2841	0.1197	0.1215	0.2335	0.2490
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2219	0.2226	0.2842	0.2603	0.2914	0.2041	0.2062	0.4236	0.4425
VARIABILITY	Capped Adjustment	10 th Percentile	0.0583	0.0589	0.0728	0.0652	0.0660	0.0528	0.0543	0.0620	0.0633
VARIABILITY	Capped Adjustment	Median	0.1104	0.1128	0.1346	0.1169	0.1236	0.1043	0.1076	0.1418	0.1452
VARIABILITY	Capped Adjustment	Mean	0.1274	0.1309	0.1522	0.1377	0.1519	0.1215	0.1242	0.2135	0.2294
VARIABILITY	Capped Adjustment	90 th Percentile	0.2250	0.2303	0.2587	0.2433	0.2872	0.2124	0.2217	0.4112	0.4536

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4016)	(CompDay)	(SameDay)	(CompDay)		(10 01 10)	(11/12 Of 4)	(H2 OF 3)
Sample	500 kW to 2000 kW	count	571	571	571	571	571	571	571	571	571
BIAS	Unadjusted	10 th Percentile	-0.0321	-0.0727	-0.0429	-0.2512	-0.0303	-0.0894	-0.0843	-0.0958	-0.0106
BIAS	Unadjusted	Median	-0.0035	-0.0313	-0.0124	-0.0750	-0.0035	-0.0409	-0.0360	-0.0252	0.0281
BIAS	Unadjusted	Mean	-0.0026	-0.0358	-0.0150	-0.0995	-0.0054	-0.0457	-0.0410	-0.0374	0.1974
BIAS	Unadjusted	90 th Percentile	0.0265	-0.0052	0.0041	0.0073	0.0154	-0.0091	-0.0079	0.0118	0.1416
BIAS	Additive Adj	10 th Percentile	-0.0042	-0.0168	-0.0112	-0.0943	-0.0136	-0.0162	-0.0137	-0.0372	-0.0326
BIAS	Additive Adj	Median	0.0081	0.0002	0.0036	-0.0037	0.0033	0.0009	0.0008	0.0009	0.0075
BIAS	Additive Adj	Mean	0.0115	0.0008	0.0047	0.0015	0.0039	0.0013	0.0015	0.0137	0.0318
BIAS	Additive Adj	90 th Percentile	0.0322	0.0178	0.0223	0.1115	0.0218	0.0193	0.0174	0.0471	0.0690
BIAS	Multiplicative Adj	10 th Percentile	-0.0029	-0.0151	-0.0062	-0.0943	-0.0088	-0.0148	-0.0137	-0.0316	-0.0238
BIAS	Multiplicative Adj	Median	0.0094	0.0013	0.0079	-0.0037	0.0060	0.0016	0.0012	0.0041	0.0095
BIAS	Multiplicative Adj	Mean	0.0157	0.0067	0.1012	0.0015	0.1421	0.0031	0.0032	0.0224	0.0420
BIAS	Multiplicative Adj	90 th Percentile	0.0401	0.0231	0.0514	0.1115	0.0409	0.0209	0.0196	0.0606	0.0871
BIAS	Capped Adjustment	10 th Percentile	-0.0159	-0.0440	-0.0240	-0.1489	-0.0335	-0.0459	-0.0495	-0.0867	-0.0155
BIAS	Capped Adjustment	Median	0.0046	-0.0068	-0.0032	-0.0323	0.0004	-0.0057	-0.0062	-0.0111	0.0125
BIAS	Capped Adjustment	Mean	0.0063	-0.0134	-0.0052	-0.0390	-0.0042	-0.0121	-0.0137	-0.0271	0.1444
BIAS	Capped Adjustment	90 th Percentile	0.0280	0.0076	0.0116	0.0592	0.0159	0.0116	0.0084	0.0181	0.0943

Table 43 Bias (500 kW to 2,000 kW): Distribution Statistics

Table 44 Accuracy (500 kW to 2,000 kW): Distribution Statistics

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	500 kW to 2000 kW	count	571	571	571	571	571	571	571	571	571
ACCURACY	Unadjusted	10 th Percentile	0.0648	0.0684	0.0682	0.0570	0.0651	0.0679	0.0692	0.0760	0.0816
ACCURACY	Unadjusted	Median	0.1407	0.1472	0.1443	0.1598	0.1440	0.1433	0.1467	0.1842	0.1989
ACCURACY	Unadjusted	Mean	0.1649	0.1733	0.1695	0.1803	0.1900	0.1694	0.1730	0.2748	0.7873
ACCURACY	Unadjusted	90 th Percentile	0.3143	0.3217	0.3143	0.3370	0.4003	0.3127	0.3239	0.5465	0.5764
ACCURACY	Additive Adj	10 th Percentile	0.0481	0.0485	0.0587	0.0645	0.0549	0.0454	0.0455	0.0524	0.0537
ACCURACY	Additive Adj	Median	0.1035	0.1045	0.1221	0.1347	0.1228	0.0978	0.0994	0.1318	0.1399
ACCURACY	Additive Adj	Mean	0.1273	0.1278	0.1510	0.1683	0.1515	0.1205	0.1218	0.2368	0.2650
ACCURACY	Additive Adj	90 th Percentile	0.2441	0.2489	0.2971	0.3194	0.3018	0.2316	0.2347	0.4102	0.4535
ACCURACY	Multiplicative Adj	10 th Percentile	0.0482	0.0483	0.0606	0.0645	0.0562	0.0458	0.0455	0.0527	0.0546
ACCURACY	Multiplicative Adj	Median	0.1036	0.1044	0.1281	0.1347	0.1263	0.0968	0.0975	0.1346	0.1376
ACCURACY	Multiplicative Adj	Mean	0.1364	0.1454	0.9433	0.1683	1.1610	0.1216	0.1241	0.2567	0.2785
ACCURACY	Multiplicative Adj	90 th Percentile	0.2686	0.2602	0.3821	0.3194	0.3414	0.2419	0.2407	0.4805	0.4700
ACCURACY	Capped Adjustment	10 th Percentile	0.0484	0.0497	0.0653	0.0670	0.0572	0.0454	0.0474	0.0543	0.0573
ACCURACY	Capped Adjustment	Median	0.1060	0.1101	0.1335	0.1395	0.1258	0.1009	0.1030	0.1407	0.1480
ACCURACY	Capped Adjustment	Mean	0.1321	0.1377	0.1579	0.1617	0.1653	0.1258	0.1310	0.2276	0.6292
ACCURACY	Capped Adjustment	90 th Percentile	0.2656	0.2705	0.3017	0.2894	0.3421	0.2475	0.2614	0.4536	0.4778

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	500 kW to 2000 kW	count	571	571	571	571	571	571	571	571	571
VARIABILITY	Unadjusted	10 th Percentile	0.0637	0.0653	0.0681	0.0460	0.0651	0.0637	0.0656	0.0746	0.0773
VARIABILITY	Unadjusted	Median	0.1393	0.1424	0.1434	0.1039	0.1440	0.1324	0.1384	0.1803	0.1948
VARIABILITY	Unadjusted	Mean	0.1633	0.1677	0.1679	0.1286	0.1890	0.1606	0.1661	0.2680	0.7670
VARIABILITY	Unadjusted	90 th Percentile	0.3116	0.3149	0.3103	0.2507	0.3983	0.3031	0.3162	0.5151	0.5600
VARIABILITY	Additive Adj	10 th Percentile	0.0477	0.0484	0.0586	0.0559	0.0544	0.0453	0.0454	0.0525	0.0535
VARIABILITY	Additive Adj	Median	0.1028	0.1039	0.1220	0.1191	0.1228	0.0973	0.0993	0.1297	0.1385
VARIABILITY	Additive Adj	Mean	0.1262	0.1271	0.1504	0.1463	0.1509	0.1198	0.1212	0.2330	0.2587
VARIABILITY	Additive Adj	90 th Percentile	0.2430	0.2488	0.2958	0.2939	0.3010	0.2316	0.2324	0.4063	0.4437
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0479	0.0480	0.0606	0.0559	0.0546	0.0458	0.0454	0.0522	0.0547
VARIABILITY	Multiplicative Adj	Median	0.1024	0.1043	0.1276	0.1191	0.1248	0.0967	0.0973	0.1326	0.1363
VARIABILITY	Multiplicative Adj	Mean	0.1349	0.1442	0.9378	0.1463	1.1519	0.1208	0.1233	0.2526	0.2723
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2657	0.2593	0.3808	0.2939	0.3388	0.2413	0.2406	0.4688	0.4449
VARIABILITY	Capped Adjustment	10 th Percentile	0.0482	0.0492	0.0650	0.0568	0.0568	0.0454	0.0472	0.0532	0.0557
VARIABILITY	Capped Adjustment	Median	0.1052	0.1089	0.1332	0.1115	0.1258	0.1005	0.1024	0.1378	0.1458
VARIABILITY	Capped Adjustment	Mean	0.1310	0.1359	0.1572	0.1351	0.1643	0.1238	0.1291	0.2226	0.6152
VARIABILITY	Capped Adjustment	90 th Percentile	0.2650	0.2679	0.3004	0.2594	0.3390	0.2441	0.2557	0.4390	0.4673

Table 45 Variability (500 kW to 2,000 kW): Distribution Statistics

Table 46 Bias (2 MW to 10 MW): Distribution Statistics

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	2 MW to 10 MW	count	141	141	141	141	141	141	141	140	140
BIAS	Unadjusted	10 th Percentile	-0.0224	-0.0619	-0.0363	-0.1848	-0.0340	-0.0717	-0.0676	-0.0622	-0.0052
BIAS	Unadjusted	Median	0.0005	-0.0191	-0.0082	-0.0244	-0.0031	-0.0284	-0.0296	-0.0172	0.0313
BIAS	Unadjusted	Mean	0.0106	-0.0189	-0.0103	-0.0580	-0.0033	-0.0294	-0.0300	-0.0178	0.0478
BIAS	Unadjusted	90 th Percentile	0.0561	0.0194	0.0085	0.0035	0.0242	0.0118	0.0101	0.0242	0.1118
BIAS	Additive Adj	10 th Percentile	-0.0078	-0.0192	-0.0154	-0.0713	-0.0274	-0.0193	-0.0204	-0.0322	-0.0445
BIAS	Additive Adj	Median	0.0063	0.0008	0.0038	-0.0087	0.0040	0.0028	0.0014	0.0007	0.0014
BIAS	Additive Adj	Mean	0.0084	0.0005	0.0051	-0.0106	0.0011	0.0008	0.0005	0.0020	-0.0018
BIAS	Additive Adj	90 th Percentile	0.0293	0.0218	0.0290	0.0553	0.0250	0.0195	0.0185	0.0281	0.0415
BIAS	Multiplicative Adj	10 th Percentile	-0.0054	-0.0141	-0.0043	-0.0713	-0.0163	-0.0163	-0.0175	-0.0222	-0.0251
BIAS	Multiplicative Adj	Median	0.0077	0.0030	0.0081	-0.0087	0.0061	0.0030	0.0020	0.0032	0.0035
BIAS	Multiplicative Adj	Mean	0.0109	0.0040	0.0309	-0.0106	0.0303	0.0017	0.0019	0.0092	0.0088
BIAS	Multiplicative Adj	90 th Percentile	0.0376	0.0310	0.0632	0.0553	0.0693	0.0204	0.0232	0.0397	0.0517
BIAS	Capped Adjustment	10 th Percentile	-0.0126	-0.0312	-0.0293	-0.1122	-0.0406	-0.0246	-0.0375	-0.0577	-0.0162
BIAS	Capped Adjustment	Median	0.0055	-0.0033	-0.0026	-0.0183	-0.0010	0.0001	-0.0051	-0.0055	0.0075
BIAS	Capped Adjustment	Mean	0.0125	-0.0037	-0.0054	-0.0212	-0.0071	0.0001	-0.0056	-0.0110	0.0223
BIAS	Capped Adjustment	90 th Percentile	0.0408	0.0234	0.0121	0.0473	0.0191	0.0181	0.0153	0.0238	0.0664

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	ECONOMIC	(1114016)	(CompDay)	(SameDay)	(CompDay)		(10 01 10)	(11/2 01 4)	(12 01 3)
Sample	2 MW to 10 MW	count	141	141	141	141	141	141	141	140	140
ACCURACY	Unadjusted	10 th Percentile	0.0558	0.0573	0.0679	0.0415	0.0558	0.0609	0.0605	0.0765	0.0765
ACCURACY	Unadjusted	Median	0.1384	0.1470	0.1445	0.1264	0.1701	0.1477	0.1519	0.1757	0.1839
ACCURACY	Unadjusted	Mean	0.1664	0.1744	0.1769	0.1398	0.2199	0.1714	0.1751	0.2061	0.2219
ACCURACY	Unadjusted	90 th Percentile	0.3003	0.3128	0.3568	0.2468	0.4804	0.3223	0.3206	0.3808	0.4105
ACCURACY	Additive Adj	10 th Percentile	0.0406	0.0403	0.0499	0.0558	0.0462	0.0381	0.0395	0.0428	0.0457
ACCURACY	Additive Adj	Median	0.0964	0.1014	0.1193	0.1181	0.1160	0.0941	0.0936	0.1064	0.1163
ACCURACY	Additive Adj	Mean	0.1249	0.1261	0.1534	0.1480	0.1567	0.1176	0.1194	0.1618	0.1709
ACCURACY	Additive Adj	90 th Percentile	0.2575	0.2604	0.3327	0.3019	0.3385	0.2447	0.2437	0.3331	0.3625
ACCURACY	Multiplicative Adj	10 th Percentile	0.0415	0.0413	0.0523	0.0558	0.0470	0.0386	0.0401	0.0443	0.0459
ACCURACY	Multiplicative Adj	Median	0.0990	0.0984	0.1281	0.1181	0.1255	0.0926	0.0932	0.1119	0.1181
ACCURACY	Multiplicative Adj	Mean	0.1300	0.1328	0.2359	0.1480	0.2533	0.1205	0.1236	0.1642	0.1697
ACCURACY	Multiplicative Adj	90 th Percentile	0.2748	0.2816	0.4357	0.3019	0.4978	0.2570	0.2647	0.3426	0.3597
ACCURACY	Capped Adjustment	10 th Percentile	0.0430	0.0432	0.0562	0.0567	0.0485	0.0384	0.0433	0.0475	0.0464
ACCURACY	Capped Adjustment	Median	0.1090	0.1151	0.1311	0.1233	0.1441	0.1004	0.1078	0.1328	0.1335
ACCURACY	Capped Adjustment	Mean	0.1355	0.1422	0.1627	0.1395	0.1879	0.1279	0.1355	0.1633	0.1670
ACCURACY	Capped Adjustment	90 th Percentile	0.2701	0.2736	0.3356	0.2485	0.4082	0.2527	0.2669	0.3206	0.3135

Table 47 Accuracy (2 MW to 10 MW): Distribution Statistics

Table 48 Variability (2 MW to 10 MW): Distribution Statistics

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	2 MW to 10 MW	count	141	141	141	141	141	141	141	140	140
VARIABILITY	Unadjusted	10 th Percentile	0.0554	0.0569	0.0664	0.0394	0.0555	0.0579	0.0581	0.0740	0.0752
VARIABILITY	Unadjusted	Median	0.1362	0.1426	0.1434	0.1022	0.1694	0.1435	0.1484	0.1698	0.1805
VARIABILITY	Unadjusted	Mean	0.1638	0.1702	0.1760	0.1105	0.2187	0.1651	0.1696	0.2024	0.2140
VARIABILITY	Unadjusted	90 th Percentile	0.2999	0.3080	0.3560	0.2031	0.4791	0.3206	0.3170	0.3740	0.3997
VARIABILITY	Additive Adj	10 th Percentile	0.0400	0.0403	0.0499	0.0443	0.0459	0.0378	0.0394	0.0426	0.0455
VARIABILITY	Additive Adj	Median	0.0945	0.1003	0.1186	0.1109	0.1160	0.0926	0.0924	0.1059	0.1131
VARIABILITY	Additive Adj	Mean	0.1239	0.1252	0.1527	0.1314	0.1557	0.1168	0.1186	0.1603	0.1681
VARIABILITY	Additive Adj	90 th Percentile	0.2571	0.2605	0.3309	0.2533	0.3345	0.2430	0.2413	0.3338	0.3542
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0409	0.0410	0.0523	0.0443	0.0466	0.0384	0.0400	0.0440	0.0459
VARIABILITY	Multiplicative Adj	Median	0.0984	0.0978	0.1281	0.1109	0.1245	0.0925	0.0926	0.1098	0.1138
VARIABILITY	Multiplicative Adj	Mean	0.1287	0.1318	0.2328	0.1314	0.2495	0.1197	0.1229	0.1622	0.1672
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2739	0.2803	0.4300	0.2533	0.4921	0.2562	0.2639	0.3421	0.3514
VARIABILITY	Capped Adjustment	10 th Percentile	0.0429	0.0432	0.0563	0.0451	0.0477	0.0375	0.0418	0.0471	0.0460
VARIABILITY	Capped Adjustment	Median	0.1074	0.1145	0.1306	0.1076	0.1436	0.0996	0.1066	0.1307	0.1317
VARIABILITY	Capped Adjustment	Mean	0.1335	0.1401	0.1621	0.1204	0.1866	0.1259	0.1334	0.1605	0.1630
VARIABILITY	Capped Adjustment	90 th Percentile	0.2653	0.2710	0.3345	0.2244	0.4063	0.2487	0.2639	0.3108	0.2945

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Over 10 MW	count	50	50	50	50	50	50	50	50	50
BIAS	Unadjusted	10 th Percentile	-0.0303	-0.0685	-0.0518	-0.1021	-0.0487	-0.0814	-0.0677	-0.0770	-0.0146
BIAS	Unadjusted	Median	0.0166	0.0001	-0.0131	-0.0115	-0.0132	-0.0174	-0.0131	-0.0211	0.0181
BIAS	Unadjusted	Mean	0.0233	-0.0106	-0.0086	-0.0318	-0.0122	-0.0282	-0.0195	-0.0166	0.0348
BIAS	Unadjusted	90 th Percentile	0.0872	0.0470	0.0328	0.0143	0.0246	0.0212	0.0208	0.0511	0.1112
BIAS	Additive Adj	10 th Percentile	-0.0141	-0.0390	-0.0264	-0.0886	-0.0342	-0.0335	-0.0309	-0.0334	-0.0144
BIAS	Additive Adj	Median	0.0080	0.0008	0.0001	-0.0105	-0.0028	0.0006	0.0001	0.0002	0.0023
BIAS	Additive Adj	Mean	0.0070	-0.0027	-0.0027	-0.0199	-0.0070	-0.0037	-0.0029	0.0005	0.0116
BIAS	Additive Adj	90 th Percentile	0.0320	0.0224	0.0201	0.0262	0.0204	0.0178	0.0155	0.0244	0.0472
BIAS	Multiplicative Adj	10 th Percentile	-0.0130	-0.0350	-0.0133	-0.0886	-0.0197	-0.0314	-0.0281	-0.0317	-0.0111
BIAS	Multiplicative Adj	Median	0.0089	0.0031	0.0069	-0.0105	0.0023	0.0015	0.0026	0.0007	0.0053
BIAS	Multiplicative Adj	Mean	0.0122	0.0041	0.0217	-0.0199	0.0356	-0.0017	-0.0004	0.0067	0.0172
BIAS	Multiplicative Adj	90 th Percentile	0.0406	0.0306	0.0936	0.0262	0.0908	0.0196	0.0193	0.0302	0.0536
BIAS	Capped Adjustment	10 th Percentile	-0.0171	-0.0388	-0.0443	-0.0840	-0.0521	-0.0445	-0.0378	-0.0595	-0.0185
BIAS	Capped Adjustment	Median	0.0083	0.0025	-0.0037	-0.0097	-0.0155	0.0000	-0.0007	-0.0028	0.0054
BIAS	Capped Adjustment	Mean	0.0181	-0.0005	-0.0078	-0.0216	-0.0191	-0.0025	-0.0023	-0.0090	0.0179
BIAS	Capped Adjustment	90 th Percentile	0.0671	0.0409	0.0197	0.0243	0.0063	0.0358	0.0292	0.0383	0.0554

Table 49 Bias (Over 10 MW): Distribution Statistics

Table 50 Accuracy (Over 10 MW): Distribution Statistics

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Over 10 MW	count	50	50	50	50	50	50	50	50	50
ACCURACY	Unadjusted	10 th Percentile	0.0807	0.0893	0.0917	0.0496	0.1194	0.0930	0.0901	0.0668	0.0583
ACCURACY	Unadjusted	Median	0.1916	0.1966	0.1959	0.1051	0.2513	0.1981	0.1997	0.1786	0.1756
ACCURACY	Unadjusted	Mean	0.2096	0.2133	0.2155	0.1251	0.2731	0.2105	0.2082	0.1995	0.1949
ACCURACY	Unadjusted	90 th Percentile	0.3733	0.3618	0.4000	0.2287	0.4810	0.3423	0.3520	0.3447	0.3494
ACCURACY	Additive Adj	10 th Percentile	0.0444	0.0434	0.0579	0.0519	0.0518	0.0436	0.0446	0.0374	0.0369
ACCURACY	Additive Adj	Median	0.1327	0.1372	0.1588	0.1472	0.1784	0.1228	0.1267	0.1105	0.1091
ACCURACY	Additive Adj	Mean	0.1504	0.1525	0.1860	0.1547	0.1877	0.1420	0.1424	0.1311	0.1302
ACCURACY	Additive Adj	90 th Percentile	0.2782	0.2737	0.3494	0.2585	0.3405	0.2531	0.2551	0.3042	0.2923
ACCURACY	Multiplicative Adj	10 th Percentile	0.0439	0.0430	0.0643	0.0519	0.0581	0.0433	0.0441	0.0375	0.0364
ACCURACY	Multiplicative Adj	Median	0.1340	0.1401	0.1646	0.1472	0.1950	0.1244	0.1298	0.1106	0.1077
ACCURACY	Multiplicative Adj	Mean	0.1586	0.1624	0.2674	0.1547	0.3685	0.1440	0.1448	0.1374	0.1329
ACCURACY	Multiplicative Adj	90 th Percentile	0.3166	0.3338	0.7583	0.2585	0.7019	0.2508	0.2539	0.3144	0.3005
ACCURACY	Capped Adjustment	10 th Percentile	0.0451	0.0452	0.0741	0.0519	0.0689	0.0605	0.0545	0.0471	0.0425
ACCURACY	Capped Adjustment	Median	0.1461	0.1482	0.1610	0.1403	0.2224	0.1413	0.1424	0.1373	0.1173
ACCURACY	Capped Adjustment	Mean	0.1650	0.1710	0.1884	0.1364	0.2307	0.1602	0.1606	0.1603	0.1516
ACCURACY	Capped Adjustment	90 th Percentile	0.3044	0.3071	0.3703	0.2039	0.4294	0.2786	0.2878	0.3172	0.3023

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Over 10 MW	count	50	50	50	50	50	50	50	50	50
VARIABILITY	Unadjusted	10 th Percentile	0.0757	0.0764	0.0907	0.0466	0.1193	0.0778	0.0775	0.0650	0.0559
VARIABILITY	Unadjusted	Median	0.1832	0.1920	0.1935	0.0997	0.2467	0.1956	0.1917	0.1725	0.1737
VARIABILITY	Unadjusted	Mean	0.2048	0.2082	0.2134	0.1102	0.2714	0.2036	0.2032	0.1929	0.1877
VARIABILITY	Unadjusted	90 th Percentile	0.3631	0.3582	0.3963	0.2001	0.4770	0.3408	0.3504	0.3329	0.3371
VARIABILITY	Additive Adj	10 th Percentile	0.0438	0.0431	0.0579	0.0501	0.0517	0.0436	0.0446	0.0372	0.0369
VARIABILITY	Additive Adj	Median	0.1311	0.1353	0.1584	0.1265	0.1784	0.1220	0.1263	0.1085	0.1060
VARIABILITY	Additive Adj	Mean	0.1493	0.1511	0.1853	0.1453	0.1866	0.1408	0.1415	0.1291	0.1276
VARIABILITY	Additive Adj	90 th Percentile	0.2776	0.2738	0.3490	0.2546	0.3389	0.2531	0.2551	0.3048	0.2928
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0433	0.0426	0.0643	0.0501	0.0575	0.0432	0.0440	0.0373	0.0362
VARIABILITY	Multiplicative Adj	Median	0.1323	0.1374	0.1643	0.1265	0.1935	0.1237	0.1277	0.1084	0.1017
VARIABILITY	Multiplicative Adj	Mean	0.1570	0.1606	0.2651	0.1453	0.3647	0.1429	0.1439	0.1347	0.1298
VARIABILITY	Multiplicative Adj	90 th Percentile	0.3129	0.3298	0.7530	0.2546	0.6994	0.2507	0.2536	0.3137	0.3003
VARIABILITY	Capped Adjustment	10 th Percentile	0.0444	0.0449	0.0739	0.0501	0.0689	0.0578	0.0540	0.0472	0.0418
VARIABILITY	Capped Adjustment	Median	0.1412	0.1437	0.1593	0.1210	0.2162	0.1386	0.1405	0.1350	0.1163
VARIABILITY	Capped Adjustment	Mean	0.1620	0.1683	0.1873	0.1281	0.2288	0.1571	0.1583	0.1561	0.1476
VARIABILITY	Capped Adjustment	90 th Percentile	0.3010	0.3046	0.3663	0.2017	0.4281	0.2740	0.2861	0.3010	0.2984

Table 51 Variability (Over 10 MW): Distribution Statistics

Table 52 Bias (Not Weather Sensitive): Distribution Statistics

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Not Weather Sensitive	count	992	992	992	992	992	992	992	991	991
BIAS	Unadjusted	10 th Percentile	-0.0224	-0.0533	-0.0305	-0.1674	-0.0285	-0.0635	-0.0671	-0.0758	-0.0058
BIAS	Unadjusted	Median	0.0019	-0.0193	-0.0092	-0.0334	-0.0029	-0.0252	-0.0223	-0.0175	0.0255
BIAS	Unadjusted	Mean	0.0063	-0.0208	-0.0074	-0.0497	-0.0033	-0.0290	-0.0276	-0.0245	0.1410
BIAS	Unadjusted	90 th Percentile	0.0379	0.0064	0.0095	0.0255	0.0204	0.0030	0.0025	0.0219	0.1478
BIAS	Additive Adj	10 th Percentile	-0.0041	-0.0150	-0.0129	-0.0746	-0.0164	-0.0159	-0.0145	-0.0349	-0.0314
BIAS	Additive Adj	Median	0.0074	0.0004	0.0029	-0.0002	0.0024	0.0009	0.0008	-0.0002	0.0055
BIAS	Additive Adj	Mean	0.0106	0.0010	0.0040	0.0114	0.0026	-0.0001	0.0010	0.0211	0.0341
BIAS	Additive Adj	90 th Percentile	0.0311	0.0179	0.0220	0.1099	0.0210	0.0177	0.0173	0.0392	0.0566
BIAS	Multiplicative Adj	10 th Percentile	-0.0028	-0.0132	-0.0073	-0.0746	-0.0103	-0.0155	-0.0146	-0.0315	-0.0198
BIAS	Multiplicative Adj	Median	0.0080	0.0010	0.0062	-0.0002	0.0047	0.0006	0.0009	0.0010	0.0083
BIAS	Multiplicative Adj	Mean	0.0129	0.0032	0.0889	0.0114	0.0856	0.0003	0.0012	0.0197	0.0351
BIAS	Multiplicative Adj	90 th Percentile	0.0360	0.0216	0.0415	0.1099	0.0370	0.0182	0.0184	0.0542	0.0727
BIAS	Capped Adjustment	10 th Percentile	-0.0095	-0.0333	-0.0214	-0.1053	-0.0342	-0.0278	-0.0354	-0.0747	-0.0112
BIAS	Capped Adjustment	Median	0.0055	-0.0030	-0.0020	-0.0101	-0.0002	-0.0014	-0.0030	-0.0058	0.0107
BIAS	Capped Adjustment	Mean	0.0098	-0.0060	-0.0015	-0.0116	-0.0044	-0.0045	-0.0071	-0.0206	0.0986
BIAS	Capped Adjustment	90 th Percentile	0.0320	0.0133	0.0142	0.0749	0.0167	0.0140	0.0123	0.0214	0.0885

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Not Weather Sensitive	count	992	992	992	992	992	992	992	991	991
ACCURACY	Unadjusted	10 th Percentile	0.0524	0.0556	0.0600	0.0500	0.0650	0.0573	0.0576	0.0604	0.0606
ACCURACY	Unadjusted	Median	0.1224	0.1275	0.1282	0.1181	0.1408	0.1227	0.1259	0.1549	0.1621
ACCURACY	Unadjusted	Mean	0.1465	0.1525	0.1598	0.1465	0.1916	0.1496	0.1526	0.2497	0.5582
ACCURACY	Unadjusted	90 th Percentile	0.2809	0.2934	0.2997	0.2742	0.4170	0.2875	0.2954	0.5279	0.5764
ACCURACY	Additive Adj	10 th Percentile	0.0394	0.0391	0.0466	0.0561	0.0476	0.0372	0.0374	0.0425	0.0445
ACCURACY	Additive Adj	Median	0.0992	0.0994	0.1163	0.1223	0.1220	0.0938	0.0948	0.1199	0.1220
ACCURACY	Additive Adj	Mean	0.1212	0.1217	0.1443	0.1548	0.1521	0.1160	0.1163	0.2477	0.2638
ACCURACY	Additive Adj	90 th Percentile	0.2327	0.2353	0.2833	0.3014	0.3057	0.2242	0.2265	0.4491	0.4907
ACCURACY	Multiplicative Adj	10 th Percentile	0.0388	0.0391	0.0481	0.0561	0.0484	0.0364	0.0370	0.0420	0.0444
ACCURACY	Multiplicative Adj	Median	0.0997	0.0999	0.1218	0.1223	0.1267	0.0931	0.0951	0.1227	0.1219
ACCURACY	Multiplicative Adj	Mean	0.1247	0.1262	0.8126	0.1548	0.7361	0.1163	0.1173	0.2487	0.2586
ACCURACY	Multiplicative Adj	90 th Percentile	0.2426	0.2456	0.3426	0.3014	0.3502	0.2228	0.2290	0.4498	0.4666
ACCURACY	Capped Adjustment	10 th Percentile	0.0406	0.0413	0.0564	0.0571	0.0539	0.0370	0.0393	0.0444	0.0458
ACCURACY	Capped Adjustment	Median	0.1012	0.1030	0.1232	0.1194	0.1272	0.0941	0.0976	0.1261	0.1289
ACCURACY	Capped Adjustment	Mean	0.1252	0.1292	0.1520	0.1445	0.1686	0.1189	0.1229	0.2136	0.4522
ACCURACY	Capped Adjustment	90 th Percentile	0.2482	0.2602	0.2910	0.2622	0.3574	0.2338	0.2518	0.4371	0.4778

Table 53 Accuracy (Not Weather Sensitive): Distribution Statistics

Table 54 Variability (Not Weather Sensitive): Distribution Statistics

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Not Weather Sensitive	count	992	992	992	992	992	992	992	991	991
VARIABILITY	Unadjusted	10 th Percentile	0.0510	0.0534	0.0599	0.0418	0.0648	0.0532	0.0551	0.0594	0.0596
VARIABILITY	Unadjusted	Median	0.1212	0.1241	0.1268	0.0918	0.1399	0.1175	0.1201	0.1507	0.1554
VARIABILITY	Unadjusted	Mean	0.1448	0.1492	0.1568	0.1160	0.1906	0.1442	0.1480	0.2448	0.5420
VARIABILITY	Unadjusted	90 th Percentile	0.2776	0.2882	0.2970	0.2240	0.4129	0.2849	0.2912	0.5103	0.5543
VARIABILITY	Additive Adj	10 th Percentile	0.0390	0.0389	0.0464	0.0502	0.0470	0.0369	0.0373	0.0421	0.0441
VARIABILITY	Additive Adj	Median	0.0983	0.0991	0.1160	0.1096	0.1214	0.0930	0.0938	0.1183	0.1204
VARIABILITY	Additive Adj	Mean	0.1201	0.1211	0.1437	0.1345	0.1515	0.1151	0.1157	0.2420	0.2565
VARIABILITY	Additive Adj	90 th Percentile	0.2300	0.2334	0.2827	0.2560	0.3048	0.2223	0.2258	0.4414	0.4877
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0386	0.0390	0.0480	0.0502	0.0478	0.0363	0.0370	0.0416	0.0440
VARIABILITY	Multiplicative Adj	Median	0.0986	0.0993	0.1211	0.1096	0.1260	0.0929	0.0949	0.1204	0.1203
VARIABILITY	Multiplicative Adj	Mean	0.1235	0.1254	0.8073	0.1345	0.7303	0.1154	0.1167	0.2448	0.2535
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2389	0.2430	0.3410	0.2560	0.3482	0.2212	0.2273	0.4416	0.4573
VARIABILITY	Capped Adjustment	10 th Percentile	0.0402	0.0408	0.0562	0.0504	0.0536	0.0367	0.0393	0.0445	0.0453
VARIABILITY	Capped Adjustment	Median	0.1002	0.1025	0.1228	0.1035	0.1266	0.0938	0.0969	0.1241	0.1271
VARIABILITY	Capped Adjustment	Mean	0.1238	0.1279	0.1500	0.1256	0.1676	0.1175	0.1216	0.2096	0.4417
VARIABILITY	Capped Adjustment	90 th Percentile	0.2452	0.2564	0.2903	0.2310	0.3553	0.2277	0.2468	0.4267	0.4579

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Weather Sensitive	count	1125	1125	1125	1125	1125	1125	1125	1125	1125
BIAS	Unadjusted	10 th Percentile	-0.0381	-0.0893	-0.0485	-0.2724	-0.0308	-0.0997	-0.0892	-0.0995	-0.0122
BIAS	Unadjusted	Median	-0.0080	-0.0419	-0.0167	-0.0834	-0.0048	-0.0533	-0.0438	-0.0367	0.0243
BIAS	Unadjusted	Mean	-0.0074	-0.0461	-0.0199	-0.1075	-0.0070	-0.0572	-0.0474	-0.0438	0.0515
BIAS	Unadjusted	90 th Percentile	0.0227	-0.0113	0.0034	0.0167	0.0127	-0.0214	-0.0139	0.0117	0.1489
BIAS	Additive Adj	10 th Percentile	-0.0065	-0.0221	-0.0150	-0.1415	-0.0112	-0.0215	-0.0190	-0.0407	-0.0272
BIAS	Additive Adj	Median	0.0085	-0.0014	0.0030	-0.0294	0.0050	-0.0007	-0.0005	-0.0003	0.0109
BIAS	Additive Adj	Mean	0.0112	-0.0025	0.0029	-0.0274	0.0052	-0.0026	-0.0016	0.0039	0.0215
BIAS	Additive Adj	90 th Percentile	0.0322	0.0180	0.0215	0.0897	0.0222	0.0160	0.0171	0.0409	0.0660
BIAS	Multiplicative Adj	10 th Percentile	-0.0050	-0.0200	-0.0093	-0.1415	-0.0073	-0.0200	-0.0184	-0.0353	-0.0163
BIAS	Multiplicative Adj	Median	0.0106	0.0008	0.0079	-0.0294	0.0088	0.0009	0.0002	0.0049	0.0155
BIAS	Multiplicative Adj	Mean	0.0151	0.0029	0.0193	-0.0274	0.0428	0.0002	0.0009	0.0135	0.0359
BIAS	Multiplicative Adj	90 th Percentile	0.0385	0.0259	0.0425	0.0897	0.0350	0.0206	0.0205	0.0587	0.0856
BIAS	Capped Adjustment	10 th Percentile	-0.0184	-0.0554	-0.0274	-0.1790	-0.0230	-0.0594	-0.0526	-0.0839	-0.0147
BIAS	Capped Adjustment	Median	0.0051	-0.0126	-0.0036	-0.0633	0.0023	-0.0120	-0.0114	-0.0153	0.0160
BIAS	Capped Adjustment	Mean	0.0045	-0.0181	-0.0059	-0.0685	-0.0006	-0.0193	-0.0177	-0.0271	0.0318
BIAS	Capped Adjustment	90 th Percentile	0.0266	0.0081	0.0129	0.0344	0.0183	0.0071	0.0065	0.0182	0.0935

Table 55 Bias (Weather Sensitive): Distribution Statistics

Table 56 Accuracy (Weather Sensitive): Distribution Statistics

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Weather Sensitive	count	1125	1125	1125	1125	1125	1125	1125	1125	1125
ACCURACY	Unadjusted	10 th Percentile	0.0916	0.0960	0.0919	0.0703	0.0743	0.0986	0.0968	0.1165	0.1105
ACCURACY	Unadjusted	Median	0.1605	0.1692	0.1541	0.1623	0.1423	0.1670	0.1679	0.2103	0.2153
ACCURACY	Unadjusted	Mean	0.1781	0.1868	0.1748	0.1917	0.1718	0.1840	0.1852	0.2717	0.2973
ACCURACY	Unadjusted	90 th Percentile	0.2870	0.2997	0.2846	0.3603	0.3175	0.2918	0.2963	0.4648	0.5429
ACCURACY	Additive Adj	10 th Percentile	0.0646	0.0647	0.0745	0.0825	0.0669	0.0603	0.0615	0.0759	0.0762
ACCURACY	Additive Adj	Median	0.1147	0.1138	0.1344	0.1548	0.1239	0.1065	0.1087	0.1463	0.1532
ACCURACY	Additive Adj	Mean	0.1323	0.1331	0.1560	0.1803	0.1473	0.1248	0.1267	0.2132	0.2258
ACCURACY	Additive Adj	90 th Percentile	0.2226	0.2264	0.2636	0.3115	0.2639	0.2113	0.2158	0.3891	0.4172
ACCURACY	Multiplicative Adj	10 th Percentile	0.0652	0.0652	0.0776	0.0825	0.0678	0.0604	0.0616	0.0769	0.0770
ACCURACY	Multiplicative Adj	Median	0.1155	0.1158	0.1395	0.1548	0.1279	0.1068	0.1090	0.1486	0.1518
ACCURACY	Multiplicative Adj	Mean	0.1384	0.1431	0.2125	0.1803	0.3348	0.1262	0.1287	0.2235	0.2468
ACCURACY	Multiplicative Adj	90 th Percentile	0.2324	0.2380	0.3121	0.3115	0.2927	0.2129	0.2227	0.3967	0.4117
ACCURACY	Capped Adjustment	10 th Percentile	0.0657	0.0669	0.0839	0.0895	0.0683	0.0611	0.0636	0.0775	0.0766
ACCURACY	Capped Adjustment	Median	0.1178	0.1212	0.1403	0.1596	0.1255	0.1106	0.1147	0.1534	0.1593
ACCURACY	Capped Adjustment	Mean	0.1358	0.1415	0.1602	0.1779	0.1529	0.1313	0.1342	0.2167	0.2315
ACCURACY	Capped Adjustment	90 th Percentile	0.2332	0.2460	0.2626	0.2979	0.2828	0.2291	0.2357	0.3958	0.4414

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Weather Sensitive	count	1125	1125	1125	1125	1125	1125	1125	1125	1125
VARIABILITY	Unadjusted	10 th Percentile	0.0905	0.0923	0.0912	0.0579	0.0736	0.0898	0.0925	0.1116	0.1092
VARIABILITY	Unadjusted	Median	0.1593	0.1610	0.1523	0.1103	0.1416	0.1548	0.1595	0.2063	0.2126
VARIABILITY	Unadjusted	Mean	0.1764	0.1793	0.1728	0.1351	0.1708	0.1727	0.1772	0.2649	0.2888
VARIABILITY	Unadjusted	90 th Percentile	0.2840	0.2902	0.2800	0.2530	0.3171	0.2763	0.2849	0.4490	0.5166
VARIABILITY	Additive Adj	10 th Percentile	0.0638	0.0645	0.0741	0.0704	0.0662	0.0600	0.0612	0.0746	0.0753
VARIABILITY	Additive Adj	Median	0.1123	0.1133	0.1339	0.1314	0.1229	0.1060	0.1081	0.1448	0.1518
VARIABILITY	Additive Adj	Mean	0.1311	0.1320	0.1554	0.1535	0.1466	0.1239	0.1260	0.2099	0.2216
VARIABILITY	Additive Adj	90 th Percentile	0.2220	0.2247	0.2635	0.2787	0.2638	0.2108	0.2159	0.3866	0.4082
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0645	0.0650	0.0775	0.0704	0.0674	0.0599	0.0614	0.0763	0.0762
VARIABILITY	Multiplicative Adj	Median	0.1140	0.1149	0.1387	0.1314	0.1273	0.1061	0.1084	0.1455	0.1492
VARIABILITY	Multiplicative Adj	Mean	0.1368	0.1418	0.2107	0.1535	0.3312	0.1251	0.1278	0.2200	0.2414
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2314	0.2348	0.3078	0.2787	0.2909	0.2121	0.2214	0.3960	0.4055
VARIABILITY	Capped Adjustment	10 th Percentile	0.0650	0.0669	0.0835	0.0705	0.0682	0.0604	0.0633	0.0751	0.0762
VARIABILITY	Capped Adjustment	Median	0.1166	0.1200	0.1399	0.1261	0.1250	0.1085	0.1130	0.1500	0.1566
VARIABILITY	Capped Adjustment	Mean	0.1347	0.1389	0.1595	0.1444	0.1521	0.1283	0.1317	0.2124	0.2263
VARIABILITY	Capped Adjustment	90 th Percentile	0.2322	0.2422	0.2616	0.2563	0.2828	0.2234	0.2293	0.3903	0.4280

Table 57 Variability (Weather Sensitive): Distribution Statistics

Table 58 Bias (Low Load Variable Customers): Distribution Statistics

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	Low Variability	count	624	624	624	624	624	624	624	623	623
BIAS	Unadjusted	10 th Percentile	-0.0173	-0.0430	-0.0248	-0.2026	-0.0131	-0.0521	-0.0438	-0.0501	-0.0064
BIAS	Unadjusted	Median	-0.0017	-0.0201	-0.0098	-0.0428	-0.0018	-0.0279	-0.0212	-0.0210	0.0120
BIAS	Unadjusted	Mean	-0.0016	-0.0218	-0.0111	-0.0674	-0.0022	-0.0291	-0.0230	-0.0226	0.0266
BIAS	Unadjusted	90 th Percentile	0.0138	-0.0029	0.0010	0.0030	0.0084	-0.0082	-0.0044	0.0039	0.0632
BIAS	Additive Adj	10 th Percentile	-0.0028	-0.0116	-0.0080	-0.1000	-0.0056	-0.0119	-0.0110	-0.0188	-0.0137
BIAS	Additive Adj	Median	0.0058	-0.0001	0.0016	-0.0246	0.0033	-0.0001	0.0000	-0.0005	0.0043
BIAS	Additive Adj	Mean	0.0072	-0.0002	0.0018	-0.0307	0.0036	-0.0009	-0.0003	-0.0001	0.0062
BIAS	Additive Adj	90 th Percentile	0.0189	0.0101	0.0121	0.0331	0.0132	0.0081	0.0077	0.0184	0.0272
BIAS	Multiplicative Adj	10 th Percentile	-0.0024	-0.0102	-0.0058	-0.1000	-0.0047	-0.0111	-0.0097	-0.0168	-0.0108
BIAS	Multiplicative Adj	Median	0.0066	0.0007	0.0034	-0.0246	0.0046	0.0008	0.0006	0.0010	0.0057
BIAS	Multiplicative Adj	Mean	0.0083	0.0015	0.0491	-0.0307	0.1352	0.0006	0.0009	0.0027	0.0105
BIAS	Multiplicative Adj	90 th Percentile	0.0208	0.0132	0.0172	0.0331	0.0163	0.0107	0.0106	0.0263	0.0303
BIAS	Capped Adjustment	10 th Percentile	-0.0033	-0.0135	-0.0116	-0.1364	-0.0061	-0.0147	-0.0122	-0.0275	-0.0078
BIAS	Capped Adjustment	Median	0.0061	-0.0006	-0.0003	-0.0342	0.0038	-0.0008	-0.0004	-0.0028	0.0061
BIAS	Capped Adjustment	Mean	0.0071	-0.0014	-0.0002	-0.0445	0.0038	-0.0021	-0.0014	-0.0065	0.0145
BIAS	Capped Adjustment	90 th Percentile	0.0185	0.0093	0.0109	0.0273	0.0141	0.0087	0.0084	0.0141	0.0367

			PJM Economic	PJM (m4of6)	PJM NWS	PJM (Same Dav)	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	ECONOMIC	(114010)	(CompDay)	(SameDay)	(CompDay)		(10 01 10)	(11/2 01 4)	(112 01 3)
Sample	Low Variability	count	624	624	624	624	624	624	624	623	623
ACCURACY	Unadjusted	10 th Percentile	0.0485	0.0505	0.0520	0.0461	0.0519	0.0507	0.0518	0.0528	0.0552
ACCURACY	Unadjusted	Median	0.0899	0.0935	0.0933	0.0777	0.0812	0.0939	0.0940	0.1192	0.1130
ACCURACY	Unadjusted	Mean	0.0931	0.0969	0.0956	0.1055	0.0833	0.0968	0.0967	0.1392	0.1482
ACCURACY	Unadjusted	90 th Percentile	0.1403	0.1461	0.1425	0.2343	0.1166	0.1418	0.1425	0.2180	0.2468
ACCURACY	Additive Adj	10 th Percentile	0.0369	0.0360	0.0443	0.0509	0.0431	0.0344	0.0348	0.0408	0.0423
ACCURACY	Additive Adj	Median	0.0684	0.0688	0.0817	0.0876	0.0741	0.0645	0.0659	0.0806	0.0835
ACCURACY	Additive Adj	Mean	0.0696	0.0698	0.0833	0.0939	0.0764	0.0653	0.0664	0.1067	0.1130
ACCURACY	Additive Adj	90 th Percentile	0.1024	0.1042	0.1221	0.1428	0.1138	0.0958	0.0970	0.1763	0.1875
ACCURACY	Multiplicative Adj	10 th Percentile	0.0372	0.0368	0.0450	0.0509	0.0432	0.0343	0.0348	0.0406	0.0417
ACCURACY	Multiplicative Adj	Median	0.0699	0.0704	0.0847	0.0876	0.0760	0.0652	0.0665	0.0844	0.0853
ACCURACY	Multiplicative Adj	Mean	0.0712	0.0715	0.4374	0.0939	1.0361	0.0663	0.0674	0.1087	0.1217
ACCURACY	Multiplicative Adj	90 th Percentile	0.1068	0.1082	0.1307	0.1428	0.1207	0.0977	0.0992	0.1839	0.1986
ACCURACY	Capped Adjustment	10 th Percentile	0.0379	0.0375	0.0481	0.0520	0.0449	0.0350	0.0353	0.0406	0.0420
ACCURACY	Capped Adjustment	Median	0.0690	0.0696	0.0882	0.0909	0.0746	0.0646	0.0660	0.0815	0.0842
ACCURACY	Capped Adjustment	Mean	0.0698	0.0704	0.0888	0.1008	0.0772	0.0661	0.0666	0.1042	0.1119
ACCURACY	Capped Adjustment	90 th Percentile	0.1023	0.1037	0.1304	0.1690	0.1131	0.0973	0.0969	0.1763	0.1939

Table 59 Accuracy (Low Load Variable Customers): Distribution Statistics

Table 60 Variability (Low Load Variable Customers): Distribution Statistics

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	Low Variability	count	624	624	624	624	624	624	624	623	623
VARIABILITY	Unadjusted	10 th Percentile	0.0482	0.0492	0.0519	0.0377	0.0518	0.0469	0.0497	0.0521	0.0531
VARIABILITY	Unadjusted	Median	0.0895	0.0902	0.0920	0.0612	0.0809	0.0872	0.0893	0.1143	0.1122
VARIABILITY	Unadjusted	Mean	0.0924	0.0936	0.0946	0.0664	0.0829	0.0913	0.0932	0.1358	0.1440
VARIABILITY	Unadjusted	90 th Percentile	0.1397	0.1422	0.1412	0.0995	0.1162	0.1357	0.1382	0.2151	0.2367
VARIABILITY	Additive Adj	10 th Percentile	0.0368	0.0358	0.0442	0.0446	0.0430	0.0340	0.0346	0.0400	0.0414
VARIABILITY	Additive Adj	Median	0.0681	0.0684	0.0817	0.0734	0.0741	0.0640	0.0652	0.0795	0.0827
VARIABILITY	Additive Adj	Mean	0.0688	0.0693	0.0830	0.0739	0.0760	0.0649	0.0660	0.1054	0.1113
VARIABILITY	Additive Adj	90 th Percentile	0.1012	0.1029	0.1221	0.1030	0.1127	0.0944	0.0965	0.1746	0.1841
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0366	0.0365	0.0449	0.0446	0.0432	0.0339	0.0346	0.0399	0.0414
VARIABILITY	Multiplicative Adj	Median	0.0688	0.0704	0.0840	0.0734	0.0758	0.0642	0.0659	0.0827	0.0837
VARIABILITY	Multiplicative Adj	Mean	0.0703	0.0709	0.4344	0.0739	1.0273	0.0658	0.0670	0.1075	0.1200
VARIABILITY	Multiplicative Adj	90 th Percentile	0.1043	0.1073	0.1302	0.1030	0.1195	0.0974	0.0993	0.1805	0.1943
VARIABILITY	Capped Adjustment	10 th Percentile	0.0378	0.0375	0.0480	0.0449	0.0446	0.0348	0.0353	0.0399	0.0416
VARIABILITY	Capped Adjustment	Median	0.0682	0.0693	0.0879	0.0733	0.0743	0.0642	0.0653	0.0802	0.0824
VARIABILITY	Capped Adjustment	Mean	0.0690	0.0698	0.0885	0.0738	0.0768	0.0655	0.0661	0.1029	0.1096
VARIABILITY	Capped Adjustment	90 th Percentile	0.1008	0.1027	0.1300	0.1013	0.1125	0.0966	0.0964	0.1718	0.1836

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Medium Variability	count	1250	1250	1250	1250	1250	1250	1250	1250	1250
BIAS	Unadjusted	10 th Percentile	-0.0356	-0.0794	-0.0453	-0.2498	-0.0331	-0.0924	-0.0836	-0.0969	-0.0075
BIAS	Unadjusted	Median	-0.0049	-0.0373	-0.0148	-0.0697	-0.0063	-0.0485	-0.0418	-0.0307	0.0314
BIAS	Unadjusted	Mean	-0.0034	-0.0388	-0.0156	-0.0899	-0.0075	-0.0495	-0.0426	-0.0370	0.0602
BIAS	Unadjusted	90 th Percentile	0.0292	-0.0023	0.0065	0.0299	0.0150	-0.0071	-0.0043	0.0192	0.1582
BIAS	Additive Adj	10 th Percentile	-0.0068	-0.0216	-0.0166	-0.1243	-0.0167	-0.0215	-0.0200	-0.0431	-0.0313
BIAS	Additive Adj	Median	0.0083	-0.0012	0.0032	-0.0080	0.0038	-0.0004	-0.0004	-0.0003	0.0108
BIAS	Additive Adj	Mean	0.0106	-0.0017	0.0025	-0.0101	0.0035	-0.0025	-0.0013	0.0068	0.0225
BIAS	Additive Adj	90 th Percentile	0.0309	0.0187	0.0213	0.0974	0.0215	0.0172	0.0169	0.0437	0.0628
BIAS	Multiplicative Adj	10 th Percentile	-0.0055	-0.0198	-0.0103	-0.1243	-0.0110	-0.0197	-0.0192	-0.0353	-0.0205
BIAS	Multiplicative Adj	Median	0.0098	0.0007	0.0079	-0.0080	0.0080	0.0002	0.0001	0.0030	0.0161
BIAS	Multiplicative Adj	Mean	0.0136	0.0019	0.0446	-0.0101	0.0177	-0.0006	0.0003	0.0137	0.0338
BIAS	Multiplicative Adj	90 th Percentile	0.0363	0.0253	0.0382	0.0974	0.0343	0.0206	0.0198	0.0594	0.0798
BIAS	Capped Adjustment	10 th Percentile	-0.0174	-0.0489	-0.0266	-0.1651	-0.0280	-0.0465	-0.0477	-0.0838	-0.0139
BIAS	Capped Adjustment	Median	0.0042	-0.0116	-0.0045	-0.0411	-0.0004	-0.0100	-0.0108	-0.0152	0.0194
BIAS	Capped Adjustment	Mean	0.0053	-0.0150	-0.0046	-0.0462	-0.0028	-0.0152	-0.0149	-0.0261	0.0360
BIAS	Capped Adjustment	90 th Percentile	0.0283	0.0105	0.0136	0.0590	0.0185	0.0113	0.0100	0.0212	0.0941

Table 61 Bias (Medium Load Variable Customers): Distribution Statistics

Table 62 Accuracy (Medium Load Variable Customers): Distribution Statistics

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	Medium Variability	count	1250	1250	1250	1250	1250	1250	1250	1250	1250
ACCURACY	Unadjusted	10 th Percentile	0.0963	0.1021	0.0994	0.0770	0.0995	0.0985	0.1019	0.1082	0.1081
ACCURACY	Unadjusted	Median	0.1617	0.1697	0.1628	0.1592	0.1655	0.1671	0.1690	0.2133	0.2189
ACCURACY	Unadjusted	Mean	0.1716	0.1800	0.1763	0.1843	0.1841	0.1757	0.1780	0.2720	0.3028
ACCURACY	Unadjusted	90 th Percentile	0.2619	0.2721	0.2716	0.3333	0.3047	0.2645	0.2688	0.4602	0.5550
ACCURACY	Additive Adj	10 th Percentile	0.0667	0.0672	0.0770	0.0890	0.0767	0.0628	0.0638	0.0746	0.0768
ACCURACY	Additive Adj	Median	0.1235	0.1247	0.1444	0.1601	0.1403	0.1161	0.1177	0.1516	0.1585
ACCURACY	Additive Adj	Mean	0.1323	0.1333	0.1560	0.1769	0.1557	0.1261	0.1270	0.2310	0.2424
ACCURACY	Additive Adj	90 th Percentile	0.2118	0.2137	0.2476	0.2872	0.2568	0.1986	0.2024	0.4003	0.4314
ACCURACY	Multiplicative Adj	10 th Percentile	0.0665	0.0669	0.0793	0.0890	0.0772	0.0621	0.0631	0.0751	0.0760
ACCURACY	Multiplicative Adj	Median	0.1253	0.1265	0.1479	0.1601	0.1470	0.1163	0.1185	0.1543	0.1581
ACCURACY	Multiplicative Adj	Mean	0.1362	0.1380	0.4725	0.1769	0.2120	0.1272	0.1284	0.2365	0.2506
ACCURACY	Multiplicative Adj	90 th Percentile	0.2225	0.2218	0.2897	0.2872	0.2891	0.2006	0.2054	0.4236	0.4309
ACCURACY	Capped Adjustment	10 th Percentile	0.0699	0.0731	0.0895	0.0911	0.0822	0.0650	0.0679	0.0789	0.0800
ACCURACY	Capped Adjustment	Median	0.1268	0.1311	0.1505	0.1572	0.1469	0.1199	0.1238	0.1602	0.1641
ACCURACY	Capped Adjustment	Mean	0.1365	0.1422	0.1633	0.1718	0.1625	0.1306	0.1339	0.2227	0.2392
ACCURACY	Capped Adjustment	90 th Percentile	0.2186	0.2289	0.2512	0.2748	0.2708	0.2080	0.2146	0.4044	0.4413

			PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDav)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Metric	Baseline	Statistic					X 1//			1 - 1	()
Sample	Medium Variability	count	1250	1250	1250	1250	1250	1250	1250	1250	1250
VARIABILITY	Unadjusted	10 th Percentile	0.0953	0.0982	0.0982	0.0660	0.0990	0.0902	0.0965	0.1021	0.1055
VARIABILITY	Unadjusted	Median	0.1601	0.1635	0.1608	0.1184	0.1643	0.1566	0.1610	0.2079	0.2146
VARIABILITY	Unadjusted	Mean	0.1697	0.1736	0.1730	0.1344	0.1831	0.1656	0.1705	0.2660	0.2929
VARIABILITY	Unadjusted	90 th Percentile	0.2581	0.2620	0.2689	0.2343	0.3035	0.2517	0.2609	0.4502	0.5278
VARIABILITY	Additive Adj	10 th Percentile	0.0659	0.0670	0.0769	0.0802	0.0761	0.0625	0.0635	0.0737	0.0750
VARIABILITY	Additive Adj	Median	0.1222	0.1241	0.1437	0.1408	0.1395	0.1156	0.1177	0.1497	0.1560
VARIABILITY	Additive Adj	Mean	0.1311	0.1324	0.1553	0.1534	0.1550	0.1250	0.1262	0.2272	0.2377
VARIABILITY	Additive Adj	90 th Percentile	0.2107	0.2126	0.2469	0.2459	0.2547	0.1977	0.2015	0.3997	0.4231
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0663	0.0666	0.0792	0.0802	0.0768	0.0616	0.0628	0.0741	0.0749
VARIABILITY	Multiplicative Adj	Median	0.1236	0.1257	0.1473	0.1408	0.1459	0.1154	0.1176	0.1520	0.1551
VARIABILITY	Multiplicative Adj	Mean	0.1347	0.1369	0.4697	0.1534	0.2104	0.1260	0.1276	0.2330	0.2454
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2173	0.2196	0.2872	0.2459	0.2862	0.1996	0.2036	0.4146	0.4246
VARIABILITY	Capped Adjustment	10 th Percentile	0.0697	0.0723	0.0888	0.0781	0.0819	0.0648	0.0672	0.0778	0.0785
VARIABILITY	Capped Adjustment	Median	0.1256	0.1302	0.1492	0.1319	0.1464	0.1185	0.1226	0.1567	0.1619
VARIABILITY	Capped Adjustment	Mean	0.1353	0.1400	0.1615	0.1442	0.1616	0.1279	0.1316	0.2184	0.2334
VARIABILITY	Capped Adjustment	90 th Percentile	0.2173	0.2237	0.2505	0.2305	0.2694	0.2025	0.2131	0.3959	0.4325

Table 63 Variability (Medium Load Variable Customers): Distribution Statistics

Table 64 Bias (High Load Variable Customers): Distribution Statistics

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	High Variability	count	243	243	243	243	243	243	243	243	243
BIAS	Unadjusted	10 th Percentile	-0.0407	-0.0980	-0.0551	-0.2390	-0.0597	-0.1101	-0.1102	-0.1915	-0.0289
BIAS	Unadjusted	Median	0.0038	-0.0447	-0.0115	-0.0499	0.0007	-0.0559	-0.0581	-0.0417	0.0695
BIAS	Unadjusted	Mean	0.0134	-0.0430	-0.0134	-0.0653	-0.0018	-0.0536	-0.0541	-0.0543	0.4355
BIAS	Unadjusted	90 th Percentile	0.0814	0.0187	0.0265	0.0377	0.0558	0.0062	0.0031	0.0528	0.2856
BIAS	Additive Adj	10 th Percentile	-0.0081	-0.0310	-0.0210	-0.1108	-0.0348	-0.0290	-0.0292	-0.0721	-0.0487
BIAS	Additive Adj	Median	0.0204	0.0036	0.0131	0.0308	0.0078	0.0045	0.0050	0.0019	0.0221
BIAS	Additive Adj	Mean	0.0223	0.0014	0.0118	0.0504	0.0077	0.0029	0.0039	0.0692	0.1065
BIAS	Additive Adj	90 th Percentile	0.0554	0.0335	0.0444	0.2382	0.0502	0.0355	0.0339	0.1491	0.2031
BIAS	Multiplicative Adj	10 th Percentile	-0.0008	-0.0232	-0.0039	-0.1108	-0.0146	-0.0263	-0.0257	-0.0564	-0.0311
BIAS	Multiplicative Adj	Median	0.0247	0.0055	0.0331	0.0308	0.0240	0.0033	0.0032	0.0089	0.0312
BIAS	Multiplicative Adj	Mean	0.0314	0.0131	0.0970	0.0504	0.1092	0.0037	0.0047	0.0654	0.1087
BIAS	Multiplicative Adj	90 th Percentile	0.0701	0.0486	0.1320	0.2382	0.1214	0.0361	0.0381	0.1654	0.2339
BIAS	Capped Adjustment	10 th Percentile	-0.0245	-0.0778	-0.0443	-0.1513	-0.0611	-0.0705	-0.0780	-0.1877	-0.0418
BIAS	Capped Adjustment	Median	0.0100	-0.0279	-0.0079	-0.0092	-0.0113	-0.0235	-0.0324	-0.0363	0.0276
BIAS	Capped Adjustment	Mean	0.0151	-0.0275	-0.0089	-0.0125	-0.0159	-0.0245	-0.0306	-0.0583	0.3268
BIAS	Capped Adjustment	90 th Percentile	0.0673	0.0166	0.0259	0.1092	0.0280	0.0210	0.0141	0.0381	0.1855

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	High Variability	count	243	243	243	243	243	243	243	243	243
ACCURACY	Unadjusted	10 th Percentile	0.1900	0.2078	0.1791	0.1279	0.2803	0.2180	0.2188	0.1835	0.2166
ACCURACY	Unadjusted	Median	0.2889	0.3039	0.2918	0.2414	0.4213	0.3050	0.3110	0.3793	0.4018
ACCURACY	Unadjusted	Mean	0.3009	0.3125	0.3091	0.2661	0.4157	0.3101	0.3161	0.5201	1.7153
ACCURACY	Unadjusted	90 th Percentile	0.4263	0.4298	0.4627	0.4272	0.5565	0.4082	0.4237	1.0616	1.1916
ACCURACY	Additive Adj	10 th Percentile	0.1293	0.1308	0.1515	0.1746	0.1670	0.1266	0.1308	0.1324	0.1430
ACCURACY	Additive Adj	Median	0.2309	0.2329	0.2809	0.3034	0.2940	0.2225	0.2238	0.3114	0.3275
ACCURACY	Additive Adj	Mean	0.2479	0.2480	0.2951	0.3158	0.3056	0.2350	0.2378	0.5358	0.5846
ACCURACY	Additive Adj	90 th Percentile	0.3893	0.3880	0.4697	0.4622	0.4688	0.3641	0.3725	0.9928	1.0769
ACCURACY	Multiplicative Adj	10 th Percentile	0.1267	0.1279	0.1495	0.1746	0.1638	0.1175	0.1186	0.1313	0.1334
ACCURACY	Multiplicative Adj	Median	0.2324	0.2402	0.3013	0.3034	0.3206	0.2190	0.2258	0.3175	0.3243
ACCURACY	Multiplicative Adj	Mean	0.2666	0.2842	0.7457	0.3158	0.8033	0.2341	0.2408	0.5532	0.5963
ACCURACY	Multiplicative Adj	90 th Percentile	0.4317	0.4198	0.8341	0.4622	0.7276	0.3673	0.3764	1.0458	1.0773
ACCURACY	Capped Adjustment	10 th Percentile	0.1419	0.1512	0.1569	0.1560	0.2303	0.1548	0.1581	0.1478	0.1678
ACCURACY	Capped Adjustment	Median	0.2492	0.2675	0.2809	0.2578	0.3601	0.2445	0.2633	0.3327	0.3428
ACCURACY	Capped Adjustment	Mean	0.2584	0.2699	0.2940	0.2706	0.3616	0.2517	0.2632	0.4618	1.3989
ACCURACY	Capped Adjustment	90 th Percentile	0.3745	0.3836	0.4372	0.3860	0.4927	0.3536	0.3658	0.9590	1.0309

Table 65 Accuracy (High Load Variable Customers): Distribution Statistics

Table 66 Variability (High Load Variable Customers): Distribution Statistics

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	High Variability	count	243	243	243	243	243	243	243	243	243
VARIABILITY	Unadjusted	10 th Percentile	0.1889	0.1993	0.1787	0.1253	0.2798	0.2113	0.2095	0.1806	0.2084
VARIABILITY	Unadjusted	Median	0.2871	0.2966	0.2877	0.2272	0.4191	0.2955	0.3010	0.3653	0.3881
VARIABILITY	Unadjusted	Mean	0.2976	0.3058	0.3070	0.2369	0.4134	0.3017	0.3081	0.5087	1.6721
VARIABILITY	Unadjusted	90 th Percentile	0.4213	0.4223	0.4628	0.3495	0.5521	0.4032	0.4201	1.0301	1.1822
VARIABILITY	Additive Adj	10 th Percentile	0.1270	0.1301	0.1508	0.1529	0.1659	0.1262	0.1293	0.1308	0.1433
VARIABILITY	Additive Adj	Median	0.2293	0.2304	0.2779	0.2715	0.2936	0.2215	0.2232	0.3074	0.3202
VARIABILITY	Additive Adj	Mean	0.2459	0.2466	0.2938	0.2808	0.3042	0.2335	0.2366	0.5196	0.5638
VARIABILITY	Additive Adj	90 th Percentile	0.3871	0.3870	0.4671	0.4037	0.4659	0.3627	0.3716	0.9843	1.0778
VARIABILITY	Multiplicative Adj	10 th Percentile	0.1263	0.1280	0.1492	0.1529	0.1626	0.1164	0.1182	0.1280	0.1330
VARIABILITY	Multiplicative Adj	Median	0.2322	0.2391	0.3001	0.2715	0.3190	0.2189	0.2251	0.3150	0.3193
VARIABILITY	Multiplicative Adj	Mean	0.2637	0.2821	0.7381	0.2808	0.7936	0.2328	0.2396	0.5424	0.5812
VARIABILITY	Multiplicative Adj	90 th Percentile	0.4213	0.4166	0.8207	0.4037	0.7200	0.3641	0.3740	1.0447	1.0651
VARIABILITY	Capped Adjustment	10 th Percentile	0.1414	0.1504	0.1569	0.1476	0.2305	0.1519	0.1526	0.1454	0.1659
VARIABILITY	Capped Adjustment	Median	0.2482	0.2615	0.2783	0.2416	0.3583	0.2396	0.2548	0.3255	0.3295
VARIABILITY	Capped Adjustment	Mean	0.2559	0.2658	0.2927	0.2496	0.3594	0.2477	0.2589	0.4514	1.3672
VARIABILITY	Capped Adjustment	90 th Percentile	0.3732	0.3808	0.4374	0.3523	0.4844	0.3473	0.3589	0.9599	1.0082

B. Appendix – Distribution Statistics (1PM – 7 PM)

The following tables present the distribution characteristics for each statistic for each baseline and baseline variant for the analysis conducted for potential event hours 1PM to 7PM.

			DIM	DIM		DIM	DINAMO	ISONE	CAISO	W/kEnd	W/kEnd
			PJIVI	PJIVI		PJIVI	PJIVI VVS	ISUNE	CAISO	VVKENU	VVKENU
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Overall	count	2117	2117	2117	2117	2117	2117	2117	2116	2116
BIAS	Unadjusted	10 th Percentile	-0.0305	-0.0758	-0.0427	-0.1161	-0.0292	-0.0852	-0.0785	-0.0895	-0.0089
BIAS	Unadjusted	Median	-0.0030	-0.0308	-0.0124	-0.0212	-0.0036	-0.0382	-0.0328	-0.0262	0.0232
BIAS	Unadjusted	Mean	-0.0009	-0.0339	-0.0152	-0.0319	-0.0042	-0.0419	-0.0369	-0.0336	0.0733
BIAS	Unadjusted	90 th Percentile	0.0296	-0.0015	0.0063	0.0269	0.0186	-0.0047	-0.0031	0.0155	0.1299
BIAS	Additive Adj	10 th Percentile	-0.0057	-0.0187	-0.0158	-0.0994	-0.0139	-0.0161	-0.0149	-0.0374	-0.0394
BIAS	Additive Adj	Median	0.0094	0.0018	0.0045	0.0292	0.0056	0.0037	0.0033	0.0010	0.0057
BIAS	Additive Adj	Mean	0.0129	0.0028	0.0054	0.0541	0.0063	0.0047	0.0044	0.0194	0.0255
BIAS	Additive Adj	90 th Percentile	0.0370	0.0264	0.0274	0.2388	0.0260	0.0283	0.0268	0.0494	0.0634
BIAS	Multiplicative Adj	10 th Percentile	-0.0041	-0.0175	-0.0092	-0.0994	-0.0092	-0.0162	-0.0158	-0.0300	-0.0238
BIAS	Multiplicative Adj	Median	0.0094	0.0014	0.0083	0.0292	0.0082	0.0020	0.0018	0.0035	0.0098
BIAS	Multiplicative Adj	Mean	0.0144	0.0038	0.0584	0.0541	0.0659	0.0149	0.0023	0.0228	0.0332
BIAS	Multiplicative Adj	90 th Percentile	0.0398	0.0261	0.0463	0.2388	0.0401	0.0231	0.0219	0.0581	0.0773
BIAS	Capped Adjustment	10 th Percentile	-0.0140	-0.0441	-0.0262	-0.0972	-0.0268	-0.0418	-0.0434	-0.0761	-0.0165
BIAS	Capped Adjustment	Median	0.0051	-0.0074	-0.0022	0.0094	0.0017	-0.0052	-0.0063	-0.0102	0.0111
BIAS	Capped Adjustment	Mean	0.0071	-0.0120	-0.0044	0.0143	-0.0011	-0.0103	-0.0115	-0.0224	0.0470
BIAS	Capped Adjustment	90 th Percentile	0.0300	0.0109	0.0145	0.1253	0.0200	0.0123	0.0107	0.0205	0.0801

Table 67 Bias (Overall): Distribution Statistics 1PM-7PM

 Table 68 Accuracy (Overall): Distribution Statistics 1PM-7PM

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Overall	count	2117	2117	2117	2117	2117	2117	2117	2116	2116
ACCURACY	Unadjusted	10 th Percentile	0.0737	0.0783	0.0784	0.0603	0.0764	0.0785	0.0793	0.0848	0.0836
ACCURACY	Unadjusted	Median	0.1523	0.1612	0.1548	0.1515	0.1571	0.1575	0.1595	0.1909	0.1993
ACCURACY	Unadjusted	Mean	0.1745	0.1825	0.1808	0.1900	0.1987	0.1787	0.1807	0.2648	0.3944
ACCURACY	Unadjusted	90 th Percentile	0.3081	0.3189	0.3163	0.3793	0.3952	0.3135	0.3142	0.4848	0.5503
ACCURACY	Additive Adj	10 th Percentile	0.0597	0.0607	0.0718	0.0857	0.0681	0.0574	0.0584	0.0620	0.0648
ACCURACY	Additive Adj	Median	0.1250	0.1259	0.1475	0.2084	0.1428	0.1181	0.1196	0.1501	0.1597
ACCURACY	Additive Adj	Mean	0.1478	0.1499	0.1752	0.2487	0.1766	0.1422	0.1433	0.2573	0.2701
ACCURACY	Additive Adj	90 th Percentile	0.2698	0.2755	0.3180	0.4750	0.3382	0.2595	0.2657	0.4669	0.5025
ACCURACY	Multiplicative Adj	10 th Percentile	0.0586	0.0591	0.0722	0.0857	0.0678	0.0557	0.0564	0.0621	0.0646
ACCURACY	Multiplicative Adj	Median	0.1222	0.1229	0.1509	0.2084	0.1453	0.1149	0.1163	0.1487	0.1531
ACCURACY	Multiplicative Adj	Mean	0.1491	0.1540	0.5456	0.2487	0.5537	0.4754	0.1401	0.2757	0.2723
ACCURACY	Multiplicative Adj	90 th Percentile	0.2744	0.2807	0.3650	0.4750	0.3849	0.2571	0.2606	0.4743	0.4746
ACCURACY	Capped Adjustment	10 th Percentile	0.0593	0.0602	0.0748	0.0842	0.0687	0.0560	0.0569	0.0626	0.0653
ACCURACY	Capped Adjustment	Median	0.1234	0.1266	0.1473	0.1932	0.1429	0.1171	0.1198	0.1503	0.1546
ACCURACY	Capped Adjustment	Mean	0.1456	0.1510	0.1729	0.2178	0.1808	0.1403	0.1435	0.2237	0.3218
ACCURACY	Capped Adjustment	90 th Percentile	0.2710	0.2832	0.3096	0.3938	0.3605	0.2613	0.2689	0.4292	0.4566

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Overall	count	2117	2117	2117	2117	2117	2117	2117	2116	2116
VARIABILITY	Unadjusted	10 th Percentile	0.0732	0.0756	0.0774	0.0580	0.0758	0.0747	0.0764	0.0818	0.0819
VARIABILITY	Unadjusted	Median	0.1505	0.1550	0.1529	0.1470	0.1564	0.1483	0.1528	0.1862	0.1951
VARIABILITY	Unadjusted	Mean	0.1730	0.1774	0.1791	0.1819	0.1977	0.1712	0.1749	0.2592	0.3853
VARIABILITY	Unadjusted	90 th Percentile	0.3045	0.3098	0.3156	0.3642	0.3933	0.3018	0.3091	0.4709	0.5318
VARIABILITY	Additive Adj	10 th Percentile	0.0595	0.0603	0.0716	0.0756	0.0679	0.0569	0.0576	0.0611	0.0646
VARIABILITY	Additive Adj	Median	0.1237	0.1252	0.1470	0.1768	0.1423	0.1171	0.1189	0.1479	0.1565
VARIABILITY	Additive Adj	Mean	0.1465	0.1488	0.1743	0.2121	0.1758	0.1410	0.1424	0.2518	0.2637
VARIABILITY	Additive Adj	90 th Percentile	0.2683	0.2737	0.3171	0.4074	0.3368	0.2584	0.2628	0.4593	0.4880
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0585	0.0588	0.0716	0.0756	0.0675	0.0553	0.0563	0.0612	0.0637
VARIABILITY	Multiplicative Adj	Median	0.1211	0.1220	0.1493	0.1768	0.1445	0.1142	0.1159	0.1462	0.1513
VARIABILITY	Multiplicative Adj	Mean	0.1477	0.1529	0.5415	0.2121	0.5488	0.4745	0.1394	0.2714	0.2670
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2719	0.2781	0.3633	0.4074	0.3814	0.2550	0.2598	0.4649	0.4684
VARIABILITY	Capped Adjustment	10 th Percentile	0.0591	0.0596	0.0747	0.0750	0.0684	0.0554	0.0565	0.0619	0.0647
VARIABILITY	Capped Adjustment	Median	0.1223	0.1256	0.1467	0.1671	0.1419	0.1158	0.1183	0.1483	0.1530
VARIABILITY	Capped Adjustment	Mean	0.1445	0.1492	0.1721	0.1978	0.1799	0.1384	0.1418	0.2199	0.3162
VARIABILITY	Capped Adjustment	90 th Percentile	0.2695	0.2783	0.3091	0.3698	0.3592	0.2573	0.2647	0.4198	0.4446

Table 69 Variability (Overall): Distribution Statistics 1PM-7PM

Table 70 Bias (175 kW to 500 kW): Distribution Statistics 1PM-7PM

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	175 kW to 500 kW	count	1355	1355	1355	1355	1355	1355	1355	1355	1355
BIAS	Unadjusted	10 th Percentile	-0.0314	-0.0774	-0.0424	-0.1145	-0.0277	-0.0873	-0.0784	-0.0896	-0.0085
BIAS	Unadjusted	Median	-0.0039	-0.0318	-0.0132	-0.0210	-0.0037	-0.0389	-0.0325	-0.0282	0.0219
BIAS	Unadjusted	Mean	-0.0023	-0.0357	-0.0157	-0.0298	-0.0043	-0.0431	-0.0373	-0.0342	0.0503
BIAS	Unadjusted	90 th Percentile	0.0259	-0.0033	0.0055	0.0306	0.0163	-0.0072	-0.0039	0.0167	0.1346
BIAS	Additive Adj	10 th Percentile	-0.0054	-0.0192	-0.0154	-0.1181	-0.0124	-0.0174	-0.0156	-0.0386	-0.0387
BIAS	Additive Adj	Median	0.0094	0.0013	0.0043	0.0231	0.0060	0.0028	0.0025	0.0007	0.0074
BIAS	Additive Adj	Mean	0.0130	0.0020	0.0050	0.0490	0.0069	0.0034	0.0035	0.0197	0.0272
BIAS	Additive Adj	90 th Percentile	0.0372	0.0257	0.0267	0.2386	0.0258	0.0275	0.0264	0.0494	0.0645
BIAS	Multiplicative Adj	10 th Percentile	-0.0040	-0.0185	-0.0098	-0.1181	-0.0083	-0.0176	-0.0162	-0.0320	-0.0215
BIAS	Multiplicative Adj	Median	0.0094	0.0009	0.0078	0.0231	0.0087	0.0013	0.0010	0.0031	0.0114
BIAS	Multiplicative Adj	Mean	0.0140	0.0020	0.0360	0.0490	0.0354	0.0208	0.0013	0.0225	0.0339
BIAS	Multiplicative Adj	90 th Percentile	0.0396	0.0252	0.0408	0.2386	0.0359	0.0216	0.0209	0.0572	0.0808
BIAS	Capped Adjustment	10 th Percentile	-0.0138	-0.0447	-0.0249	-0.1123	-0.0212	-0.0421	-0.0433	-0.0746	-0.0158
BIAS	Capped Adjustment	Median	0.0049	-0.0083	-0.0019	0.0051	0.0025	-0.0063	-0.0070	-0.0105	0.0125
BIAS	Capped Adjustment	Mean	0.0064	-0.0129	-0.0038	0.0085	0.0006	-0.0119	-0.0123	-0.0224	0.0298
BIAS	Capped Adjustment	90 th Percentile	0.0285	0.0107	0.0150	0.1231	0.0201	0.0111	0.0099	0.0205	0.0801

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	175 kW to 500 kW	count	1355	1355	1355	1355	1355	1355	1355	1355	1355
ACCURACY	Unadjusted	10 th Percentile	0.0783	0.0806	0.0812	0.0625	0.0776	0.0798	0.0813	0.0898	0.0861
ACCURACY	Unadjusted	Median	0.1520	0.1603	0.1530	0.1486	0.1504	0.1571	0.1579	0.1952	0.2014
ACCURACY	Unadjusted	Mean	0.1718	0.1795	0.1769	0.1909	0.1869	0.1758	0.1774	0.2669	0.2935
ACCURACY	Unadjusted	90 th Percentile	0.2915	0.3022	0.3048	0.3909	0.3644	0.2986	0.3039	0.4850	0.5736
ACCURACY	Additive Adj	10 th Percentile	0.0626	0.0634	0.0742	0.0869	0.0705	0.0599	0.0608	0.0672	0.0686
ACCURACY	Additive Adj	Median	0.1257	0.1261	0.1475	0.2065	0.1406	0.1183	0.1201	0.1530	0.1611
ACCURACY	Additive Adj	Mean	0.1461	0.1482	0.1723	0.2513	0.1722	0.1405	0.1418	0.2634	0.2733
ACCURACY	Additive Adj	90 th Percentile	0.2621	0.2641	0.3078	0.4844	0.3229	0.2512	0.2536	0.4844	0.5146
ACCURACY	Multiplicative Adj	10 th Percentile	0.0615	0.0619	0.0736	0.0869	0.0705	0.0581	0.0594	0.0677	0.0682
ACCURACY	Multiplicative Adj	Median	0.1240	0.1255	0.1510	0.2065	0.1436	0.1161	0.1175	0.1515	0.1588
ACCURACY	Multiplicative Adj	Mean	0.1454	0.1472	0.3629	0.2513	0.3104	0.6630	0.1383	0.2856	0.2740
ACCURACY	Multiplicative Adj	90 th Percentile	0.2594	0.2650	0.3346	0.4844	0.3487	0.2469	0.2484	0.4843	0.4915
ACCURACY	Capped Adjustment	10 th Percentile	0.0630	0.0635	0.0769	0.0861	0.0710	0.0589	0.0600	0.0664	0.0677
ACCURACY	Capped Adjustment	Median	0.1236	0.1259	0.1463	0.1936	0.1400	0.1171	0.1194	0.1524	0.1568
ACCURACY	Capped Adjustment	Mean	0.1430	0.1479	0.1699	0.2203	0.1726	0.1380	0.1405	0.2257	0.2421
ACCURACY	Capped Adjustment	90 th Percentile	0.2573	0.2667	0.2951	0.4002	0.3327	0.2490	0.2570	0.4319	0.4735

Table 71 Accuracy (175 kW to 500 kW): Distribution Statistics 1PM-7PM

Table 72 Variability (175 kW to 500 kW): Distribution Statistics 1PM-7PM

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	175 kW to 500 kW	count	1355	1355	1355	1355	1355	1355	1355	1355	1355
VARIABILITY	Unadjusted	10 th Percentile	0.0770	0.0784	0.0805	0.0595	0.0771	0.0758	0.0785	0.0859	0.0857
VARIABILITY	Unadjusted	Median	0.1504	0.1549	0.1516	0.1446	0.1494	0.1483	0.1529	0.1897	0.1990
VARIABILITY	Unadjusted	Mean	0.1704	0.1742	0.1753	0.1830	0.1860	0.1681	0.1716	0.2615	0.2858
VARIABILITY	Unadjusted	90 th Percentile	0.2896	0.2958	0.3018	0.3715	0.3627	0.2866	0.2918	0.4743	0.5503
VARIABILITY	Additive Adj	10 th Percentile	0.0622	0.0629	0.0737	0.0781	0.0699	0.0593	0.0605	0.0662	0.0677
VARIABILITY	Additive Adj	Median	0.1241	0.1254	0.1471	0.1724	0.1398	0.1176	0.1196	0.1512	0.1597
VARIABILITY	Additive Adj	Mean	0.1449	0.1471	0.1715	0.2123	0.1714	0.1393	0.1409	0.2575	0.2670
VARIABILITY	Additive Adj	90 th Percentile	0.2587	0.2629	0.3059	0.4153	0.3215	0.2500	0.2525	0.4827	0.5120
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0614	0.0615	0.0730	0.0781	0.0700	0.0581	0.0594	0.0669	0.0673
VARIABILITY	Multiplicative Adj	Median	0.1221	0.1233	0.1503	0.1724	0.1427	0.1150	0.1168	0.1496	0.1551
VARIABILITY	Multiplicative Adj	Mean	0.1441	0.1463	0.3601	0.2123	0.3074	0.6622	0.1375	0.2815	0.2688
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2578	0.2638	0.3313	0.4153	0.3488	0.2457	0.2473	0.4671	0.4873
VARIABILITY	Capped Adjustment	10 th Percentile	0.0623	0.0634	0.0769	0.0770	0.0709	0.0583	0.0597	0.0657	0.0667
VARIABILITY	Capped Adjustment	Median	0.1225	0.1250	0.1459	0.1643	0.1387	0.1155	0.1178	0.1500	0.1553
VARIABILITY	Capped Adjustment	Mean	0.1420	0.1461	0.1691	0.1991	0.1719	0.1362	0.1388	0.2222	0.2376
VARIABILITY	Capped Adjustment	90 th Percentile	0.2550	0.2638	0.2941	0.3756	0.3327	0.2462	0.2550	0.4218	0.4639

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	ECONOMIC	(1114016)	(CompDay)	(SameDay)	(CompDay)		(10 01 10)	(11/2 01 4)	(12013)
Sample	500 kW to 2000 kW	count	571	571	571	571	571	571	571	571	571
BIAS	Unadjusted	10 th Percentile	-0.0315	-0.0734	-0.0476	-0.1212	-0.0292	-0.0846	-0.0819	-0.0947	-0.0099
BIAS	Unadjusted	Median	-0.0036	-0.0310	-0.0122	-0.0264	-0.0030	-0.0397	-0.0350	-0.0247	0.0254
BIAS	Unadjusted	Mean	-0.0021	-0.0355	-0.0160	-0.0392	-0.0042	-0.0437	-0.0396	-0.0376	0.1388
BIAS	Unadjusted	90 th Percentile	0.0293	-0.0045	0.0058	0.0191	0.0190	-0.0075	-0.0062	0.0108	0.1259
BIAS	Additive Adj	10 th Percentile	-0.0043	-0.0159	-0.0142	-0.0592	-0.0154	-0.0136	-0.0114	-0.0368	-0.0473
BIAS	Additive Adj	Median	0.0103	0.0026	0.0051	0.0556	0.0054	0.0057	0.0047	0.0030	0.0046
BIAS	Additive Adj	Mean	0.0144	0.0053	0.0065	0.0781	0.0068	0.0083	0.0075	0.0239	0.0305
BIAS	Additive Adj	90 th Percentile	0.0396	0.0284	0.0282	0.2624	0.0278	0.0337	0.0309	0.0552	0.0693
BIAS	Multiplicative Adj	10 th Percentile	-0.0022	-0.0155	-0.0088	-0.0592	-0.0079	-0.0134	-0.0132	-0.0291	-0.0278
BIAS	Multiplicative Adj	Median	0.0099	0.0018	0.0094	0.0556	0.0078	0.0032	0.0031	0.0062	0.0085
BIAS	Multiplicative Adj	Mean	0.0167	0.0077	0.1192	0.0781	0.1475	0.0052	0.0048	0.0278	0.0394
BIAS	Multiplicative Adj	90 th Percentile	0.0431	0.0276	0.0550	0.2624	0.0442	0.0245	0.0247	0.0670	0.0793
BIAS	Capped Adjustment	10 th Percentile	-0.0144	-0.0458	-0.0297	-0.0699	-0.0320	-0.0442	-0.0482	-0.0892	-0.0188
BIAS	Capped Adjustment	Median	0.0053	-0.0066	-0.0031	0.0209	0.0011	-0.0043	-0.0060	-0.0114	0.0099
BIAS	Capped Adjustment	Mean	0.0069	-0.0130	-0.0058	0.0299	-0.0028	-0.0101	-0.0121	-0.0270	0.0974
BIAS	Capped Adjustment	90 th Percentile	0.0302	0.0081	0.0129	0.1333	0.0196	0.0134	0.0104	0.0166	0.0813

Table 73 Bias (500 kW to 2,000 kW): Distribution Statistics 1PM-7PM

Table 74 Accuracy (500 kW to 2,000 kW): Distribution Statistics 1PM-7PM

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	500 kW to 2000 kW	count	571	571	571	571	571	571	571	571	571
ACCURACY	Unadjusted	10 th Percentile	0.0680	0.0722	0.0720	0.0564	0.0748	0.0718	0.0715	0.0786	0.0812
ACCURACY	Unadjusted	Median	0.1501	0.1602	0.1550	0.1783	0.1631	0.1533	0.1598	0.1875	0.1998
ACCURACY	Unadjusted	Mean	0.1784	0.1874	0.1856	0.2039	0.2118	0.1829	0.1861	0.2796	0.6939
ACCURACY	Unadjusted	90 th Percentile	0.3477	0.3590	0.3528	0.3918	0.4227	0.3324	0.3451	0.5390	0.5646
ACCURACY	Additive Adj	10 th Percentile	0.0567	0.0578	0.0689	0.0849	0.0637	0.0542	0.0544	0.0567	0.0651
ACCURACY	Additive Adj	Median	0.1189	0.1202	0.1453	0.2321	0.1459	0.1152	0.1166	0.1525	0.1665
ACCURACY	Additive Adj	Mean	0.1519	0.1540	0.1794	0.2614	0.1835	0.1468	0.1475	0.2724	0.2935
ACCURACY	Additive Adj	90 th Percentile	0.2988	0.3038	0.3461	0.4964	0.3568	0.2862	0.2891	0.4728	0.5040
ACCURACY	Multiplicative Adj	10 th Percentile	0.0557	0.0555	0.0694	0.0849	0.0629	0.0517	0.0518	0.0562	0.0650
ACCURACY	Multiplicative Adj	Median	0.1149	0.1195	0.1447	0.2321	0.1444	0.1105	0.1129	0.1498	0.1550
ACCURACY	Multiplicative Adj	Mean	0.1572	0.1694	1.0686	0.2614	1.2090	0.1412	0.1434	0.2869	0.3014
ACCURACY	Multiplicative Adj	90 th Percentile	0.3101	0.3084	0.4265	0.4964	0.4072	0.2772	0.2775	0.5082	0.4803
ACCURACY	Capped Adjustment	10 th Percentile	0.0559	0.0556	0.0704	0.0831	0.0633	0.0517	0.0526	0.0570	0.0650
ACCURACY	Capped Adjustment	Median	0.1184	0.1239	0.1467	0.2094	0.1439	0.1149	0.1168	0.1504	0.1542
ACCURACY	Capped Adjustment	Mean	0.1493	0.1556	0.1772	0.2272	0.1897	0.1436	0.1481	0.2374	0.5617
ACCURACY	Capped Adjustment	90 th Percentile	0.2900	0.3087	0.3278	0.4135	0.3872	0.2849	0.2960	0.4573	0.4807

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	500 kW to 2000 kW	count	571	571	571	571	571	571	571	571	571
VARIABILITY	Unadjusted	10 th Percentile	0.0675	0.0681	0.0709	0.0542	0.0745	0.0677	0.0691	0.0777	0.0787
VARIABILITY	Unadjusted	Median	0.1486	0.1530	0.1530	0.1695	0.1625	0.1441	0.1509	0.1843	0.1944
VARIABILITY	Unadjusted	Mean	0.1770	0.1823	0.1838	0.1945	0.2107	0.1752	0.1799	0.2730	0.6809
VARIABILITY	Unadjusted	90 th Percentile	0.3440	0.3533	0.3475	0.3815	0.4196	0.3275	0.3394	0.5320	0.5601
VARIABILITY	Additive Adj	10 th Percentile	0.0562	0.0576	0.0686	0.0737	0.0633	0.0540	0.0542	0.0568	0.0643
VARIABILITY	Additive Adj	Median	0.1184	0.1201	0.1453	0.1945	0.1439	0.1146	0.1160	0.1504	0.1655
VARIABILITY	Additive Adj	Mean	0.1506	0.1530	0.1785	0.2249	0.1827	0.1456	0.1465	0.2668	0.2860
VARIABILITY	Additive Adj	90 th Percentile	0.2965	0.3023	0.3462	0.4256	0.3558	0.2842	0.2853	0.4618	0.4907
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0552	0.0554	0.0691	0.0737	0.0626	0.0514	0.0518	0.0557	0.0647
VARIABILITY	Multiplicative Adj	Median	0.1143	0.1194	0.1439	0.1945	0.1434	0.1101	0.1126	0.1471	0.1533
VARIABILITY	Multiplicative Adj	Mean	0.1557	0.1682	1.0612	0.2249	1.1994	0.1404	0.1427	0.2817	0.2950
VARIABILITY	Multiplicative Adj	90 th Percentile	0.3053	0.3055	0.4252	0.4256	0.4018	0.2774	0.2770	0.5007	0.4764
VARIABILITY	Capped Adjustment	10 th Percentile	0.0558	0.0555	0.0699	0.0718	0.0629	0.0514	0.0526	0.0568	0.0643
VARIABILITY	Capped Adjustment	Median	0.1178	0.1221	0.1464	0.1846	0.1431	0.1132	0.1165	0.1473	0.1539
VARIABILITY	Capped Adjustment	Mean	0.1484	0.1539	0.1764	0.2085	0.1887	0.1419	0.1464	0.2326	0.5530
VARIABILITY	Capped Adjustment	90 th Percentile	0.2884	0.3025	0.3268	0.3905	0.3821	0.2810	0.2949	0.4538	0.4774

Table 75 Variability (500 kW to 2,000 kW): Distribution Statistics 1PM-7PM

Table 76 Bias (2 MW to 10 MW): Distribution Statistics 1PM-7PM

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	2 MW to 10 MW	count	141	141	141	141	141	141	141	140	140
BIAS	Unadjusted	10 th Percentile	-0.0215	-0.0551	-0.0345	-0.0945	-0.0327	-0.0652	-0.0692	-0.0586	-0.0057
BIAS	Unadjusted	Median	0.0012	-0.0210	-0.0084	-0.0138	-0.0020	-0.0277	-0.0291	-0.0161	0.0281
BIAS	Unadjusted	Mean	0.0096	-0.0189	-0.0091	-0.0259	-0.0014	-0.0279	-0.0290	-0.0174	0.0438
BIAS	Unadjusted	90 th Percentile	0.0486	0.0175	0.0121	0.0152	0.0271	0.0108	0.0070	0.0253	0.1100
BIAS	Additive Adj	10 th Percentile	-0.0121	-0.0210	-0.0164	-0.0731	-0.0233	-0.0181	-0.0178	-0.0262	-0.0557
BIAS	Additive Adj	Median	0.0068	0.0018	0.0046	0.0149	0.0039	0.0051	0.0034	0.0006	0.0001
BIAS	Additive Adj	Mean	0.0080	0.0019	0.0072	0.0278	0.0033	0.0042	0.0032	0.0036	-0.0059
BIAS	Additive Adj	90 th Percentile	0.0322	0.0259	0.0337	0.1449	0.0272	0.0243	0.0254	0.0330	0.0359
BIAS	Multiplicative Adj	10 th Percentile	-0.0099	-0.0161	-0.0035	-0.0731	-0.0125	-0.0153	-0.0154	-0.0159	-0.0304
BIAS	Multiplicative Adj	Median	0.0083	0.0030	0.0086	0.0149	0.0080	0.0025	0.0020	0.0018	0.0030
BIAS	Multiplicative Adj	Mean	0.0102	0.0043	0.0376	0.0278	0.0366	0.0034	0.0031	0.0107	0.0065
BIAS	Multiplicative Adj	90 th Percentile	0.0357	0.0305	0.0786	0.1449	0.0966	0.0222	0.0237	0.0471	0.0462
BIAS	Capped Adjustment	10 th Percentile	-0.0110	-0.0310	-0.0204	-0.0660	-0.0417	-0.0194	-0.0361	-0.0625	-0.0158
BIAS	Capped Adjustment	Median	0.0049	-0.0038	-0.0019	0.0076	-0.0003	0.0007	-0.0025	-0.0048	0.0057
BIAS	Capped Adjustment	Mean	0.0116	-0.0035	-0.0035	0.0152	-0.0048	0.0017	-0.0045	-0.0103	0.0190
BIAS	Capped Adjustment	90 th Percentile	0.0345	0.0220	0.0140	0.1026	0.0263	0.0175	0.0145	0.0234	0.0603

			PJM	PJM	PJM NWS	PJM (Same Dav)	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	ECONOMIC	(1114010)	(Compoay)	(SameDay)	(Compbay)			(1012 01 4)	(H2 01 3)
Sample	2 MW to 10 MW	count	141	141	141	141	141	141	141	140	140
ACCURACY	Unadjusted	10 th Percentile	0.0675	0.0706	0.0717	0.0417	0.0706	0.0713	0.0704	0.0753	0.0759
ACCURACY	Unadjusted	Median	0.1502	0.1564	0.1659	0.1291	0.1916	0.1544	0.1572	0.1719	0.1836
ACCURACY	Unadjusted	Mean	0.1741	0.1827	0.1875	0.1483	0.2335	0.1794	0.1829	0.2076	0.2211
ACCURACY	Unadjusted	90 th Percentile	0.3096	0.3208	0.3565	0.2631	0.4708	0.3220	0.3189	0.3776	0.3998
ACCURACY	Additive Adj	10 th Percentile	0.0521	0.0538	0.0661	0.0697	0.0631	0.0519	0.0543	0.0498	0.0493
ACCURACY	Additive Adj	Median	0.1205	0.1223	0.1449	0.1701	0.1494	0.1191	0.1175	0.1236	0.1335
ACCURACY	Additive Adj	Mean	0.1427	0.1452	0.1779	0.1988	0.1815	0.1365	0.1379	0.1782	0.1896
ACCURACY	Additive Adj	90 th Percentile	0.2886	0.2893	0.3674	0.3455	0.3665	0.2687	0.2689	0.3779	0.4015
ACCURACY	Multiplicative Adj	10 th Percentile	0.0521	0.0530	0.0670	0.0697	0.0625	0.0495	0.0505	0.0501	0.0487
ACCURACY	Multiplicative Adj	Median	0.1213	0.1201	0.1484	0.1701	0.1534	0.1148	0.1166	0.1218	0.1247
ACCURACY	Multiplicative Adj	Mean	0.1456	0.1499	0.2717	0.1988	0.2921	0.1370	0.1399	0.1797	0.1846
ACCURACY	Multiplicative Adj	90 th Percentile	0.3026	0.3100	0.5059	0.3455	0.5592	0.2762	0.2763	0.3701	0.3814
ACCURACY	Capped Adjustment	10 th Percentile	0.0545	0.0558	0.0677	0.0674	0.0618	0.0487	0.0511	0.0535	0.0495
ACCURACY	Capped Adjustment	Median	0.1253	0.1339	0.1540	0.1647	0.1721	0.1186	0.1266	0.1389	0.1342
ACCURACY	Capped Adjustment	Mean	0.1477	0.1550	0.1782	0.1788	0.2047	0.1410	0.1482	0.1699	0.1735
ACCURACY	Capped Adjustment	90 th Percentile	0.2874	0.2960	0.3412	0.2949	0.4161	0.2788	0.2861	0.3476	0.3475

Table 77 Accuracy (2 MW to 10 MW): Distribution Statistics 1PM-7PM

Table 78 Variability (2 MW to 10 MW): Distribution Statistics 1PM-7PM

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	2 MW to 10 MW	count	141	141	141	141	141	141	141	140	140
VARIABILITY	Unadjusted	10 th Percentile	0.0669	0.0692	0.0715	0.0416	0.0707	0.0671	0.0697	0.0717	0.0758
VARIABILITY	Unadjusted	Median	0.1492	0.1520	0.1655	0.1249	0.1917	0.1498	0.1517	0.1669	0.1772
VARIABILITY	Unadjusted	Mean	0.1718	0.1789	0.1866	0.1421	0.2323	0.1738	0.1780	0.2041	0.2143
VARIABILITY	Unadjusted	90 th Percentile	0.3083	0.3173	0.3558	0.2507	0.4667	0.3215	0.3141	0.3757	0.3903
VARIABILITY	Additive Adj	10 th Percentile	0.0520	0.0535	0.0661	0.0603	0.0628	0.0514	0.0536	0.0485	0.0492
VARIABILITY	Additive Adj	Median	0.1202	0.1223	0.1432	0.1550	0.1492	0.1187	0.1175	0.1226	0.1309
VARIABILITY	Additive Adj	Mean	0.1417	0.1443	0.1772	0.1761	0.1805	0.1356	0.1371	0.1768	0.1869
VARIABILITY	Additive Adj	90 th Percentile	0.2874	0.2865	0.3654	0.2940	0.3600	0.2686	0.2683	0.3770	0.3937
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0510	0.0522	0.0669	0.0603	0.0622	0.0495	0.0504	0.0487	0.0487
VARIABILITY	Multiplicative Adj	Median	0.1209	0.1197	0.1473	0.1550	0.1534	0.1147	0.1165	0.1217	0.1228
VARIABILITY	Multiplicative Adj	Mean	0.1444	0.1489	0.2677	0.1761	0.2878	0.1363	0.1392	0.1777	0.1823
VARIABILITY	Multiplicative Adj	90 th Percentile	0.3003	0.3098	0.5007	0.2940	0.5577	0.2754	0.2761	0.3687	0.3769
VARIABILITY	Capped Adjustment	10 th Percentile	0.0542	0.0551	0.0676	0.0602	0.0617	0.0480	0.0508	0.0532	0.0489
VARIABILITY	Capped Adjustment	Median	0.1245	0.1333	0.1537	0.1463	0.1706	0.1181	0.1242	0.1358	0.1324
VARIABILITY	Capped Adjustment	Mean	0.1459	0.1531	0.1777	0.1617	0.2034	0.1393	0.1463	0.1672	0.1702
VARIABILITY	Capped Adjustment	90 th Percentile	0.2826	0.2922	0.3395	0.2608	0.4159	0.2723	0.2757	0.3351	0.3415

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Over 10 MW	count	50	50	50	50	50	50	50	50	50
BIAS	Unadjusted	10 th Percentile	-0.0294	-0.0670	-0.0518	-0.0464	-0.0496	-0.0803	-0.0655	-0.0755	-0.0175
BIAS	Unadjusted	Median	0.0145	-0.0001	-0.0098	-0.0132	-0.0137	-0.0159	-0.0122	-0.0184	0.0186
BIAS	Unadjusted	Mean	0.0211	-0.0104	-0.0085	-0.0205	-0.0120	-0.0268	-0.0189	-0.0141	0.0336
BIAS	Unadjusted	90 th Percentile	0.0816	0.0445	0.0302	0.0116	0.0278	0.0209	0.0194	0.0567	0.1166
BIAS	Additive Adj	10 th Percentile	-0.0121	-0.0334	-0.0245	-0.0719	-0.0316	-0.0330	-0.0292	-0.0246	-0.0201
BIAS	Additive Adj	Median	0.0044	0.0020	-0.0001	-0.0091	-0.0027	0.0009	0.0015	0.0000	0.0019
BIAS	Additive Adj	Mean	0.0054	-0.0016	-0.0021	-0.0067	-0.0065	-0.0013	-0.0014	0.0033	0.0102
BIAS	Additive Adj	90 th Percentile	0.0293	0.0251	0.0202	0.0629	0.0203	0.0201	0.0195	0.0258	0.0462
BIAS	Multiplicative Adj	10 th Percentile	-0.0116	-0.0314	-0.0146	-0.0719	-0.0184	-0.0309	-0.0273	-0.0206	-0.0136
BIAS	Multiplicative Adj	Median	0.0072	0.0046	0.0106	-0.0091	0.0051	0.0020	0.0013	0.0010	0.0044
BIAS	Multiplicative Adj	Mean	0.0105	0.0048	0.0264	-0.0067	0.0411	0.0000	0.0005	0.0096	0.0167
BIAS	Multiplicative Adj	90 th Percentile	0.0366	0.0273	0.1071	0.0629	0.1208	0.0205	0.0203	0.0328	0.0506
BIAS	Capped Adjustment	10 th Percentile	-0.0188	-0.0405	-0.0381	-0.0733	-0.0482	-0.0434	-0.0364	-0.0497	-0.0196
BIAS	Capped Adjustment	Median	0.0083	0.0005	-0.0037	-0.0111	-0.0142	0.0015	-0.0001	-0.0063	0.0020
BIAS	Capped Adjustment	Mean	0.0161	-0.0001	-0.0068	-0.0086	-0.0180	-0.0010	-0.0016	-0.0063	0.0170
BIAS	Capped Adjustment	90 th Percentile	0.0643	0.0406	0.0167	0.0624	0.0078	0.0341	0.0274	0.0375	0.0642

Table 79 Bias (Over 10 MW): Distribution Statistics 1PM-7PM

Table 80 Accuracy (Over 10 MW): Distribution Statistics 1PM-7PM

			PJM	PJM	PJMNWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Over 10 MW	count	50	50	50	50	50	50	50	50	50
ACCURACY	Unadjusted	10 th Percentile	0.0776	0.0857	0.0951	0.0510	0.1200	0.0933	0.0872	0.0765	0.0660
ACCURACY	Unadjusted	Median	0.1927	0.1936	0.1893	0.1061	0.2395	0.1909	0.1939	0.1755	0.1736
ACCURACY	Unadjusted	Mean	0.2053	0.2092	0.2099	0.1237	0.2704	0.2065	0.2044	0.1993	0.1935
ACCURACY	Unadjusted	90 th Percentile	0.3614	0.3497	0.3943	0.2234	0.4721	0.3331	0.3468	0.3631	0.3547
ACCURACY	Additive Adj	10 th Percentile	0.0533	0.0535	0.0744	0.0829	0.0644	0.0496	0.0508	0.0349	0.0353
ACCURACY	Additive Adj	Median	0.1438	0.1449	0.1704	0.1546	0.1942	0.1353	0.1388	0.1221	0.1185
ACCURACY	Additive Adj	Mean	0.1586	0.1610	0.1978	0.1724	0.2022	0.1503	0.1505	0.1404	0.1391
ACCURACY	Additive Adj	90 th Percentile	0.2802	0.2758	0.3627	0.2856	0.3583	0.2566	0.2584	0.3150	0.2976
ACCURACY	Multiplicative Adj	10 th Percentile	0.0512	0.0514	0.0752	0.0829	0.0658	0.0490	0.0500	0.0345	0.0348
ACCURACY	Multiplicative Adj	Median	0.1456	0.1488	0.1826	0.1546	0.2046	0.1354	0.1387	0.1201	0.1166
ACCURACY	Multiplicative Adj	Mean	0.1667	0.1710	0.2888	0.1724	0.3969	0.1526	0.1529	0.1465	0.1405
ACCURACY	Multiplicative Adj	90 th Percentile	0.3198	0.3370	0.7752	0.2856	0.8198	0.2567	0.2594	0.3125	0.3009
ACCURACY	Capped Adjustment	10 th Percentile	0.0479	0.0484	0.0758	0.0633	0.0731	0.0601	0.0551	0.0483	0.0466
ACCURACY	Capped Adjustment	Median	0.1488	0.1517	0.1661	0.1470	0.2186	0.1438	0.1453	0.1426	0.1226
ACCURACY	Capped Adjustment	Mean	0.1661	0.1720	0.1895	0.1517	0.2330	0.1612	0.1618	0.1649	0.1553
ACCURACY	Capped Adjustment	90 th Percentile	0.3045	0.3055	0.3648	0.2371	0.4293	0.2791	0.2889	0.3214	0.3079

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	Over 10 MW	count	50	50	50	50	50	50	50	50	50
VARIABILITY	Unadjusted	10 th Percentile	0.0735	0.0744	0.0929	0.0503	0.1199	0.0798	0.0770	0.0689	0.0658
VARIABILITY	Unadjusted	Median	0.1878	0.1913	0.1854	0.1032	0.2383	0.1871	0.1925	0.1633	0.1703
VARIABILITY	Unadjusted	Mean	0.2010	0.2045	0.2080	0.1180	0.2688	0.2002	0.1999	0.1928	0.1864
VARIABILITY	Unadjusted	90 th Percentile	0.3521	0.3470	0.3901	0.2118	0.4696	0.3284	0.3454	0.3378	0.3445
VARIABILITY	Additive Adj	10 th Percentile	0.0530	0.0533	0.0742	0.0813	0.0643	0.0496	0.0507	0.0349	0.0353
VARIABILITY	Additive Adj	Median	0.1416	0.1439	0.1702	0.1431	0.1931	0.1343	0.1376	0.1189	0.1168
VARIABILITY	Additive Adj	Mean	0.1576	0.1598	0.1970	0.1618	0.2012	0.1493	0.1497	0.1387	0.1364
VARIABILITY	Additive Adj	90 th Percentile	0.2797	0.2758	0.3627	0.2618	0.3548	0.2565	0.2584	0.3149	0.2980
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0510	0.0514	0.0752	0.0813	0.0648	0.0489	0.0499	0.0346	0.0349
VARIABILITY	Multiplicative Adj	Median	0.1427	0.1476	0.1821	0.1431	0.2043	0.1345	0.1382	0.1176	0.1158
VARIABILITY	Multiplicative Adj	Mean	0.1652	0.1694	0.2861	0.1618	0.3927	0.1517	0.1521	0.1439	0.1373
VARIABILITY	Multiplicative Adj	90 th Percentile	0.3169	0.3337	0.7678	0.2618	0.8112	0.2556	0.2579	0.3087	0.3007
VARIABILITY	Capped Adjustment	10 th Percentile	0.0477	0.0484	0.0757	0.0621	0.0730	0.0592	0.0547	0.0484	0.0457
VARIABILITY	Capped Adjustment	Median	0.1448	0.1471	0.1641	0.1278	0.2165	0.1416	0.1431	0.1354	0.1207
VARIABILITY	Capped Adjustment	Mean	0.1634	0.1695	0.1885	0.1427	0.2313	0.1584	0.1597	0.1609	0.1513
VARIABILITY	Capped Adjustment	90 th Percentile	0.3005	0.3021	0.3647	0.2281	0.4294	0.2728	0.2858	0.3101	0.2941

Table 81 Variability (Over 10 MW): Distribution Statistics 1PM-7PM

Table 82 Bias (Not Weather Sensitive): Distribution Statistics 1PM-7PM

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Not Weather Sensitive	count	992	992	992	992	992	992	992	991	991
BIAS	Unadjusted	10 th Percentile	-0.0212	-0.0523	-0.0305	-0.0770	-0.0278	-0.0621	-0.0663	-0.0713	-0.0058
BIAS	Unadjusted	Median	0.0020	-0.0195	-0.0090	-0.0124	-0.0022	-0.0246	-0.0219	-0.0176	0.0247
BIAS	Unadjusted	Mean	0.0063	-0.0205	-0.0094	-0.0169	-0.0025	-0.0269	-0.0267	-0.0236	0.1059
BIAS	Unadjusted	90 th Percentile	0.0389	0.0050	0.0114	0.0343	0.0224	0.0050	0.0033	0.0213	0.1362
BIAS	Additive Adj	10 th Percentile	-0.0057	-0.0157	-0.0143	-0.0670	-0.0160	-0.0144	-0.0137	-0.0350	-0.0394
BIAS	Additive Adj	Median	0.0080	0.0017	0.0037	0.0219	0.0032	0.0031	0.0029	0.0002	0.0031
BIAS	Additive Adj	Mean	0.0114	0.0027	0.0052	0.0542	0.0041	0.0038	0.0037	0.0286	0.0336
BIAS	Additive Adj	90 th Percentile	0.0359	0.0233	0.0263	0.2234	0.0246	0.0255	0.0247	0.0469	0.0585
BIAS	Multiplicative Adj	10 th Percentile	-0.0037	-0.0141	-0.0080	-0.0670	-0.0112	-0.0143	-0.0147	-0.0288	-0.0237
BIAS	Multiplicative Adj	Median	0.0082	0.0017	0.0073	0.0219	0.0058	0.0019	0.0017	0.0013	0.0066
BIAS	Multiplicative Adj	Mean	0.0130	0.0037	0.1012	0.0542	0.0899	0.0033	0.0021	0.0293	0.0335
BIAS	Multiplicative Adj	90 th Percentile	0.0380	0.0241	0.0493	0.2234	0.0424	0.0209	0.0202	0.0570	0.0744
BIAS	Capped Adjustment	10 th Percentile	-0.0098	-0.0316	-0.0228	-0.0679	-0.0323	-0.0264	-0.0354	-0.0688	-0.0152
BIAS	Capped Adjustment	Median	0.0056	-0.0030	-0.0015	0.0128	0.0005	-0.0005	-0.0023	-0.0059	0.0092
BIAS	Capped Adjustment	Mean	0.0099	-0.0056	-0.0027	0.0266	-0.0033	-0.0024	-0.0061	-0.0193	0.0705
BIAS	Capped Adjustment	90 th Percentile	0.0330	0.0143	0.0160	0.1407	0.0188	0.0168	0.0135	0.0218	0.0815

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Not Weather Sensitive	count	992	992	992	992	992	992	992	991	991
ACCURACY	Unadjusted	10 th Percentile	0.0566	0.0604	0.0613	0.0509	0.0680	0.0611	0.0617	0.0613	0.0638
ACCURACY	Unadjusted	Median	0.1283	0.1334	0.1370	0.1220	0.1552	0.1294	0.1318	0.1584	0.1688
ACCURACY	Unadjusted	Mean	0.1560	0.1625	0.1678	0.1566	0.2058	0.1585	0.1618	0.2550	0.5060
ACCURACY	Unadjusted	90 th Percentile	0.2967	0.3101	0.3139	0.2957	0.4284	0.3091	0.3141	0.5356	0.5826
ACCURACY	Additive Adj	10 th Percentile	0.0456	0.0458	0.0563	0.0696	0.0585	0.0442	0.0448	0.0460	0.0484
ACCURACY	Additive Adj	Median	0.1119	0.1144	0.1338	0.1659	0.1410	0.1066	0.1077	0.1308	0.1365
ACCURACY	Additive Adj	Mean	0.1376	0.1392	0.1632	0.2130	0.1749	0.1322	0.1332	0.2777	0.2892
ACCURACY	Additive Adj	90 th Percentile	0.2671	0.2679	0.3122	0.4126	0.3470	0.2565	0.2590	0.4900	0.5267
ACCURACY	Multiplicative Adj	10 th Percentile	0.0443	0.0450	0.0570	0.0696	0.0583	0.0423	0.0435	0.0458	0.0472
ACCURACY	Multiplicative Adj	Median	0.1105	0.1121	0.1372	0.1659	0.1425	0.1056	0.1062	0.1322	0.1334
ACCURACY	Multiplicative Adj	Mean	0.1401	0.1431	0.8898	0.2130	0.7709	0.1391	0.1324	0.3121	0.2788
ACCURACY	Multiplicative Adj	90 th Percentile	0.2721	0.2810	0.3722	0.4126	0.4090	0.2550	0.2588	0.5018	0.5056
ACCURACY	Capped Adjustment	10 th Percentile	0.0452	0.0455	0.0603	0.0685	0.0597	0.0424	0.0438	0.0475	0.0487
ACCURACY	Capped Adjustment	Median	0.1107	0.1143	0.1342	0.1563	0.1425	0.1055	0.1076	0.1336	0.1352
ACCURACY	Capped Adjustment	Mean	0.1378	0.1425	0.1635	0.1857	0.1858	0.1314	0.1357	0.2237	0.4172
ACCURACY	Capped Adjustment	90 th Percentile	0.2733	0.2868	0.3110	0.3332	0.3917	0.2613	0.2795	0.4520	0.4920

Table 83 Accuracy (Not Weather Sensitive): Distribution Statistics 1PM-7PM

Table 84 Variability (Not Weather Sensitive): Distribution Statistics 1PM-7PM

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Not Weather Sensitive	count	992	992	992	992	992	992	992	991	991
VARIABILITY	Unadjusted	10 th Percentile	0.0562	0.0582	0.0605	0.0489	0.0679	0.0566	0.0585	0.0590	0.0627
VARIABILITY	Unadjusted	Median	0.1270	0.1306	0.1362	0.1177	0.1544	0.1242	0.1278	0.1550	0.1608
VARIABILITY	Unadjusted	Mean	0.1545	0.1595	0.1666	0.1499	0.2049	0.1538	0.1576	0.2503	0.4945
VARIABILITY	Unadjusted	90 th Percentile	0.2962	0.3074	0.3126	0.2813	0.4277	0.3045	0.3101	0.5217	0.5574
VARIABILITY	Additive Adj	10 th Percentile	0.0455	0.0454	0.0560	0.0651	0.0581	0.0436	0.0444	0.0453	0.0476
VARIABILITY	Additive Adj	Median	0.1106	0.1133	0.1330	0.1471	0.1402	0.1062	0.1076	0.1298	0.1335
VARIABILITY	Additive Adj	Mean	0.1365	0.1384	0.1623	0.1808	0.1742	0.1313	0.1325	0.2704	0.2808
VARIABILITY	Additive Adj	90 th Percentile	0.2639	0.2653	0.3113	0.3422	0.3454	0.2551	0.2577	0.4857	0.5270
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0440	0.0449	0.0565	0.0651	0.0583	0.0422	0.0433	0.0453	0.0469
VARIABILITY	Multiplicative Adj	Median	0.1101	0.1117	0.1364	0.1471	0.1421	0.1045	0.1056	0.1297	0.1300
VARIABILITY	Multiplicative Adj	Mean	0.1390	0.1423	0.8832	0.1808	0.7647	0.1384	0.1317	0.3071	0.2734
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2715	0.2807	0.3712	0.3422	0.4087	0.2517	0.2567	0.4994	0.5061
VARIABILITY	Capped Adjustment	10 th Percentile	0.0449	0.0454	0.0599	0.0633	0.0595	0.0422	0.0435	0.0468	0.0485
VARIABILITY	Capped Adjustment	Median	0.1102	0.1138	0.1339	0.1396	0.1415	0.1042	0.1067	0.1319	0.1320
VARIABILITY	Capped Adjustment	Mean	0.1366	0.1412	0.1627	0.1663	0.1849	0.1303	0.1344	0.2198	0.4100
VARIABILITY	Capped Adjustment	90 th Percentile	0.2735	0.2846	0.3101	0.2986	0.3882	0.2596	0.2731	0.4443	0.4774

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Weather Sensitive	count	1125	1125	1125	1125	1125	1125	1125	1125	1125
BIAS	Unadjusted	10 th Percentile	-0.0368	-0.0871	-0.0503	-0.1334	-0.0296	-0.0951	-0.0850	-0.0960	-0.0128
BIAS	Unadjusted	Median	-0.0092	-0.0416	-0.0168	-0.0324	-0.0046	-0.0516	-0.0428	-0.0359	0.0224
BIAS	Unadjusted	Mean	-0.0073	-0.0458	-0.0202	-0.0451	-0.0058	-0.0551	-0.0460	-0.0424	0.0446
BIAS	Unadjusted	90 th Percentile	0.0228	-0.0125	0.0046	0.0203	0.0152	-0.0199	-0.0129	0.0099	0.1264
BIAS	Additive Adj	10 th Percentile	-0.0057	-0.0211	-0.0161	-0.1307	-0.0112	-0.0180	-0.0158	-0.0389	-0.0390
BIAS	Additive Adj	Median	0.0107	0.0021	0.0049	0.0386	0.0076	0.0042	0.0039	0.0025	0.0081
BIAS	Additive Adj	Mean	0.0141	0.0029	0.0055	0.0541	0.0082	0.0054	0.0051	0.0112	0.0184
BIAS	Additive Adj	90 th Percentile	0.0384	0.0299	0.0275	0.2566	0.0277	0.0327	0.0294	0.0501	0.0660
BIAS	Multiplicative Adj	10 th Percentile	-0.0044	-0.0199	-0.0103	-0.1307	-0.0074	-0.0182	-0.0164	-0.0315	-0.0240
BIAS	Multiplicative Adj	Median	0.0105	0.0012	0.0089	0.0386	0.0103	0.0021	0.0020	0.0063	0.0126
BIAS	Multiplicative Adj	Mean	0.0156	0.0038	0.0206	0.0541	0.0447	0.0251	0.0025	0.0171	0.0329
BIAS	Multiplicative Adj	90 th Percentile	0.0409	0.0281	0.0437	0.2566	0.0390	0.0244	0.0234	0.0591	0.0812
BIAS	Capped Adjustment	10 th Percentile	-0.0172	-0.0534	-0.0278	-0.1235	-0.0207	-0.0530	-0.0490	-0.0794	-0.0173
BIAS	Capped Adjustment	Median	0.0048	-0.0127	-0.0034	0.0064	0.0030	-0.0110	-0.0110	-0.0145	0.0128
BIAS	Capped Adjustment	Mean	0.0047	-0.0176	-0.0058	0.0035	0.0009	-0.0172	-0.0162	-0.0252	0.0263
BIAS	Capped Adjustment	90 th Percentile	0.0269	0.0080	0.0141	0.1137	0.0204	0.0085	0.0079	0.0174	0.0792

Table 85 Bias (Weather Sensitive): Distribution Statistics 1PM-7PM

Table 86 Accuracy (Weather Sensitive): Distribution Statistics 1PM-7PM

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Weather Sensitive	count	1125	1125	1125	1125	1125	1125	1125	1125	1125
ACCURACY	Unadjusted	10 th Percentile	0.1006	0.1054	0.0974	0.0707	0.0839	0.1058	0.1042	0.1165	0.1109
ACCURACY	Unadjusted	Median	0.1700	0.1793	0.1663	0.1788	0.1584	0.1766	0.1782	0.2126	0.2198
ACCURACY	Unadjusted	Mean	0.1909	0.2001	0.1922	0.2194	0.1923	0.1965	0.1973	0.2734	0.2960
ACCURACY	Unadjusted	90 th Percentile	0.3108	0.3228	0.3184	0.4346	0.3618	0.3158	0.3150	0.4643	0.5341
ACCURACY	Additive Adj	10 th Percentile	0.0756	0.0762	0.0899	0.1065	0.0794	0.0719	0.0728	0.0815	0.0816
ACCURACY	Additive Adj	Median	0.1337	0.1352	0.1559	0.2372	0.1459	0.1281	0.1299	0.1618	0.1727
ACCURACY	Additive Adj	Mean	0.1567	0.1592	0.1858	0.2801	0.1780	0.1509	0.1522	0.2393	0.2532
ACCURACY	Additive Adj	90 th Percentile	0.2728	0.2823	0.3241	0.5136	0.3294	0.2694	0.2716	0.4477	0.4679
ACCURACY	Multiplicative Adj	10 th Percentile	0.0741	0.0747	0.0905	0.1065	0.0796	0.0694	0.0709	0.0819	0.0824
ACCURACY	Multiplicative Adj	Median	0.1300	0.1317	0.1564	0.2372	0.1465	0.1219	0.1238	0.1623	0.1654
ACCURACY	Multiplicative Adj	Mean	0.1570	0.1635	0.2423	0.2801	0.3624	0.7716	0.1470	0.2435	0.2666
ACCURACY	Multiplicative Adj	90 th Percentile	0.2747	0.2801	0.3614	0.5136	0.3499	0.2575	0.2624	0.4529	0.4484
ACCURACY	Capped Adjustment	10 th Percentile	0.0738	0.0752	0.0919	0.1054	0.0791	0.0703	0.0715	0.0804	0.0813
ACCURACY	Capped Adjustment	Median	0.1302	0.1337	0.1537	0.2155	0.1433	0.1244	0.1270	0.1623	0.1663
ACCURACY	Capped Adjustment	Mean	0.1524	0.1585	0.1811	0.2460	0.1763	0.1481	0.1504	0.2238	0.2377
ACCURACY	Capped Adjustment	90 th Percentile	0.2669	0.2800	0.3077	0.4311	0.3313	0.2612	0.2649	0.4069	0.4430

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Weather Sensitive	count	1125	1125	1125	1125	1125	1125	1125	1125	1125
VARIABILITY	Unadjusted	10 th Percentile	0.0999	0.1003	0.0969	0.0668	0.0834	0.0972	0.1001	0.1120	0.1103
VARIABILITY	Unadjusted	Median	0.1684	0.1716	0.1652	0.1717	0.1571	0.1666	0.1712	0.2067	0.2157
VARIABILITY	Unadjusted	Mean	0.1893	0.1932	0.1902	0.2101	0.1914	0.1864	0.1901	0.2670	0.2892
VARIABILITY	Unadjusted	90 th Percentile	0.3093	0.3127	0.3163	0.4149	0.3612	0.3005	0.3074	0.4575	0.5156
VARIABILITY	Additive Adj	10 th Percentile	0.0751	0.0758	0.0892	0.0921	0.0789	0.0711	0.0723	0.0803	0.0807
VARIABILITY	Additive Adj	Median	0.1323	0.1343	0.1555	0.2034	0.1444	0.1273	0.1290	0.1589	0.1707
VARIABILITY	Additive Adj	Mean	0.1553	0.1580	0.1849	0.2397	0.1771	0.1495	0.1511	0.2355	0.2487
VARIABILITY	Additive Adj	90 th Percentile	0.2714	0.2808	0.3210	0.4450	0.3290	0.2631	0.2656	0.4400	0.4647
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0735	0.0740	0.0899	0.0921	0.0795	0.0692	0.0706	0.0804	0.0817
VARIABILITY	Multiplicative Adj	Median	0.1288	0.1316	0.1554	0.2034	0.1452	0.1218	0.1228	0.1591	0.1630
VARIABILITY	Multiplicative Adj	Mean	0.1554	0.1622	0.2404	0.2397	0.3587	0.7706	0.1461	0.2400	0.2614
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2724	0.2766	0.3587	0.4450	0.3500	0.2572	0.2619	0.4396	0.4397
VARIABILITY	Capped Adjustment	10 th Percentile	0.0733	0.0746	0.0916	0.0887	0.0788	0.0698	0.0711	0.0791	0.0806
VARIABILITY	Capped Adjustment	Median	0.1297	0.1326	0.1530	0.1921	0.1425	0.1233	0.1255	0.1595	0.1631
VARIABILITY	Capped Adjustment	Mean	0.1514	0.1563	0.1804	0.2256	0.1755	0.1456	0.1483	0.2200	0.2336
VARIABILITY	Capped Adjustment	90 th Percentile	0.2668	0.2761	0.3067	0.4179	0.3312	0.2561	0.2623	0.4040	0.4287

Table 87 Variability (Weather Sensitive): Distribution Statistics 1PM-7PM

Table 88 Bias (Low Load Variable Customers): Distribution Statistics 1PM-7PM

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO	WkEnd	WkEnd
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		(10 of 10)	(M2 of 4)	(H2 of 3)
Sample	Low Variability	count	624	624	624	624	624	624	624	623	623
BIAS	Unadjusted	10 th Percentile	-0.0181	-0.0432	-0.0254	-0.1042	-0.0129	-0.0512	-0.0424	-0.0490	-0.0078
BIAS	Unadjusted	Median	-0.0024	-0.0201	-0.0104	-0.0181	-0.0015	-0.0273	-0.0206	-0.0211	0.0100
BIAS	Unadjusted	Mean	-0.0020	-0.0220	-0.0115	-0.0307	-0.0012	-0.0285	-0.0226	-0.0222	0.0240
BIAS	Unadjusted	90 th Percentile	0.0131	-0.0036	0.0004	0.0096	0.0118	-0.0077	-0.0045	0.0037	0.0635
BIAS	Additive Adj	10 th Percentile	-0.0032	-0.0111	-0.0089	-0.0775	-0.0060	-0.0102	-0.0091	-0.0183	-0.0215
BIAS	Additive Adj	Median	0.0059	0.0007	0.0017	0.0035	0.0043	0.0016	0.0013	0.0003	0.0028
BIAS	Additive Adj	Mean	0.0074	0.0008	0.0021	0.0124	0.0048	0.0013	0.0013	0.0022	0.0037
BIAS	Additive Adj	90 th Percentile	0.0194	0.0120	0.0138	0.1195	0.0156	0.0123	0.0107	0.0239	0.0270
BIAS	Multiplicative Adj	10 th Percentile	-0.0029	-0.0105	-0.0070	-0.0775	-0.0047	-0.0099	-0.0091	-0.0152	-0.0150
BIAS	Multiplicative Adj	Median	0.0062	0.0007	0.0033	0.0035	0.0056	0.0011	0.0012	0.0011	0.0047
BIAS	Multiplicative Adj	Mean	0.0079	0.0014	0.0494	0.0124	0.1377	0.0013	0.0013	0.0034	0.0089
BIAS	Multiplicative Adj	90 th Percentile	0.0202	0.0131	0.0180	0.1195	0.0188	0.0129	0.0115	0.0285	0.0323
BIAS	Capped Adjustment	10 th Percentile	-0.0033	-0.0136	-0.0116	-0.0807	-0.0062	-0.0140	-0.0120	-0.0265	-0.0105
BIAS	Capped Adjustment	Median	0.0054	-0.0005	-0.0003	-0.0020	0.0044	-0.0001	-0.0004	-0.0031	0.0053
BIAS	Capped Adjustment	Mean	0.0068	-0.0015	-0.0005	-0.0040	0.0048	-0.0014	-0.0010	-0.0059	0.0125
BIAS	Capped Adjustment	90 th Percentile	0.0178	0.0093	0.0106	0.0724	0.0169	0.0100	0.0092	0.0142	0.0363

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	Low Variability	count	624	624	624	624	624	624	624	623	623
ACCURACY	Unadiusted	10 th Percentile	0.0511	0.0535	0.0551	0.0466	0.0569	0.0546	0.0555	0.0561	0.0567
ACCURACY	Unadjusted	Median	0.0961	0.1010	0.1001	0.0784	0.0891	0.1009	0.1013	0.1215	0.1150
ACCURACY	Unadjusted	Mean	0.1015	0.1058	0.1081	0.1161	0.0976	0.1050	0.1047	0.1431	0.1516
ACCURACY	Unadjusted	90 th Percentile	0.1559	0.1611	0.1663	0.2694	0.1481	0.1586	0.1581	0.2415	0.2580
ACCURACY	Additive Adj	10 th Percentile	0.0436	0.0432	0.0520	0.0637	0.0503	0.0413	0.0413	0.0438	0.0472
ACCURACY	Additive Adj	Median	0.0780	0.0788	0.0948	0.1153	0.0846	0.0732	0.0745	0.0880	0.0923
ACCURACY	Additive Adj	Mean	0.0828	0.0838	0.1022	0.1452	0.0942	0.0793	0.0800	0.1221	0.1300
ACCURACY	Additive Adj	90 th Percentile	0.1277	0.1284	0.1569	0.2749	0.1438	0.1212	0.1232	0.2215	0.2481
ACCURACY	Multiplicative Adj	10 th Percentile	0.0433	0.0425	0.0522	0.0637	0.0507	0.0397	0.0407	0.0441	0.0462
ACCURACY	Multiplicative Adj	Median	0.0780	0.0792	0.0966	0.1153	0.0857	0.0730	0.0745	0.0888	0.0913
ACCURACY	Multiplicative Adj	Mean	0.0828	0.0839	0.4579	0.1452	1.0629	0.0786	0.0794	0.1192	0.1326
ACCURACY	Multiplicative Adj	90 th Percentile	0.1280	0.1296	0.1644	0.2749	0.1540	0.1231	0.1222	0.2089	0.2297
ACCURACY	Capped Adjustment	10 th Percentile	0.0431	0.0426	0.0528	0.0631	0.0524	0.0401	0.0409	0.0441	0.0462
ACCURACY	Capped Adjustment	Median	0.0769	0.0776	0.0957	0.1141	0.0845	0.0725	0.0737	0.0861	0.0893
ACCURACY	Capped Adjustment	Mean	0.0813	0.0826	0.1042	0.1373	0.0936	0.0782	0.0783	0.1118	0.1198
ACCURACY	Capped Adjustment	90 th Percentile	0.1251	0.1274	0.1603	0.2553	0.1424	0.1217	0.1200	0.2020	0.2296

Table 89 Accuracy (Low Load Variable Customers): Distribution Statistics 1PM-7PM

Table 90 Variability (Low Load Variable Customers): Distribution Statistics 1PM-7PM

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	Low Variability	count	624	624	624	624	624	624	624	623	623
VARIABILITY	Unadjusted	10 th Percentile	0.0511	0.0523	0.0545	0.0446	0.0568	0.0522	0.0538	0.0542	0.0559
VARIABILITY	Unadjusted	Median	0.0957	0.0967	0.0987	0.0757	0.0886	0.0953	0.0960	0.1168	0.1141
VARIABILITY	Unadjusted	Mean	0.1008	0.1027	0.1072	0.1089	0.0972	0.1000	0.1014	0.1397	0.1479
VARIABILITY	Unadjusted	90 th Percentile	0.1544	0.1553	0.1651	0.2461	0.1476	0.1540	0.1547	0.2373	0.2546
VARIABILITY	Additive Adj	10 th Percentile	0.0433	0.0430	0.0516	0.0596	0.0503	0.0407	0.0410	0.0438	0.0470
VARIABILITY	Additive Adj	Median	0.0777	0.0780	0.0945	0.0981	0.0843	0.0726	0.0740	0.0871	0.0902
VARIABILITY	Additive Adj	Mean	0.0821	0.0833	0.1019	0.1242	0.0938	0.0788	0.0796	0.1207	0.1282
VARIABILITY	Additive Adj	90 th Percentile	0.1264	0.1276	0.1569	0.2502	0.1428	0.1205	0.1218	0.2188	0.2459
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0425	0.0425	0.0517	0.0596	0.0507	0.0397	0.0405	0.0437	0.0460
VARIABILITY	Multiplicative Adj	Median	0.0773	0.0784	0.0958	0.0981	0.0854	0.0726	0.0743	0.0879	0.0903
VARIABILITY	Multiplicative Adj	Mean	0.0820	0.0834	0.4548	0.1242	1.0537	0.0781	0.0789	0.1179	0.1308
VARIABILITY	Multiplicative Adj	90 th Percentile	0.1266	0.1291	0.1643	0.2502	0.1534	0.1227	0.1218	0.2049	0.2282
VARIABILITY	Capped Adjustment	10 th Percentile	0.0427	0.0425	0.0525	0.0589	0.0524	0.0399	0.0408	0.0437	0.0460
VARIABILITY	Capped Adjustment	Median	0.0765	0.0774	0.0952	0.0947	0.0839	0.0719	0.0732	0.0856	0.0879
VARIABILITY	Capped Adjustment	Mean	0.0806	0.0821	0.1038	0.1211	0.0931	0.0776	0.0779	0.1106	0.1179
VARIABILITY	Capped Adjustment	90 th Percentile	0.1239	0.1259	0.1603	0.2429	0.1414	0.1212	0.1191	0.2014	0.2189

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	Medium Variability	count	1250	1250	1250	1250	1250	1250	1250	1250	1250
BIAS	Unadjusted	10 th Percentile	-0.0342	-0.0782	-0.0487	-0.1226	-0.0310	-0.0898	-0.0810	-0.0942	-0.0078
BIAS	Unadjusted	Median	-0.0056	-0.0367	-0.0150	-0.0266	-0.0056	-0.0463	-0.0414	-0.0290	0.0292
BIAS	Unadjusted	Mean	-0.0032	-0.0383	-0.0177	-0.0366	-0.0065	-0.0468	-0.0411	-0.0355	0.0528
BIAS	Unadjusted	90 th Percentile	0.0309	-0.0015	0.0076	0.0295	0.0163	-0.0042	-0.0025	0.0205	0.1381
BIAS	Additive Adj	10 th Percentile	-0.0072	-0.0212	-0.0196	-0.1123	-0.0168	-0.0184	-0.0173	-0.0402	-0.0435
BIAS	Additive Adj	Median	0.0106	0.0023	0.0053	0.0487	0.0060	0.0051	0.0044	0.0013	0.0072
BIAS	Additive Adj	Mean	0.0130	0.0026	0.0045	0.0596	0.0058	0.0048	0.0043	0.0130	0.0189
BIAS	Additive Adj	90 th Percentile	0.0361	0.0269	0.0268	0.2393	0.0260	0.0289	0.0276	0.0525	0.0644
BIAS	Multiplicative Adj	10 th Percentile	-0.0056	-0.0209	-0.0119	-0.1123	-0.0112	-0.0184	-0.0179	-0.0324	-0.0262
BIAS	Multiplicative Adj	Median	0.0102	0.0015	0.0097	0.0487	0.0093	0.0023	0.0019	0.0046	0.0128
BIAS	Multiplicative Adj	Mean	0.0141	0.0027	0.0495	0.0596	0.0200	0.0029	0.0019	0.0206	0.0305
BIAS	Multiplicative Adj	90 th Percentile	0.0396	0.0261	0.0420	0.2393	0.0365	0.0243	0.0219	0.0607	0.0754
BIAS	Capped Adjustment	10 th Percentile	-0.0172	-0.0453	-0.0285	-0.1094	-0.0260	-0.0453	-0.0452	-0.0811	-0.0167
BIAS	Capped Adjustment	Median	0.0043	-0.0120	-0.0039	0.0163	0.0002	-0.0085	-0.0099	-0.0154	0.0159
BIAS	Capped Adjustment	Mean	0.0056	-0.0144	-0.0060	0.0158	-0.0015	-0.0124	-0.0134	-0.0242	0.0300
BIAS	Capped Adjustment	90 th Percentile	0.0298	0.0116	0.0144	0.1270	0.0203	0.0136	0.0112	0.0218	0.0805

Table 91 Bias (Medium Load Variable Customers): Distribution Statistics 1PM-7PM

Table 92 Accuracy (Medium Load Variable Customers): Distribution Statistics 1PM-7PM

Metric	Baseline	Statistic	PJM Economic	PJM (m4of6)	PJM NWS (CompDay)	PJM (SameDay)	PJM WS (CompDay)	ISONE	CAISO (10 of 10)	WkEnd (M2 of 4)	WkEnd (H2 of 3)
Sample	Medium Variability	count	1250	1250	1250	1250	1250	1250	1250	1250	1250
ACCURACY	Unadjusted	10 th Percentile	0.1006	0.1059	0.1014	0.0762	0.1078	0.1029	0.1054	0.1099	0.1073
ACCURACY	Unadjusted	Median	0.1715	0.1793	0.1719	0.1714	0.1759	0.1760	0.1786	0.2147	0.2226
ACCURACY	Unadjusted	Mean	0.1829	0.1918	0.1877	0.2064	0.2017	0.1863	0.1889	0.2742	0.3013
ACCURACY	Unadjusted	90 th Percentile	0.2878	0.2991	0.3039	0.3965	0.3377	0.2855	0.2894	0.4667	0.5345
ACCURACY	Additive Adj	10 th Percentile	0.0768	0.0779	0.0908	0.1150	0.0912	0.0737	0.0750	0.0803	0.0829
ACCURACY	Additive Adj	Median	0.1388	0.1409	0.1606	0.2326	0.1619	0.1328	0.1350	0.1675	0.1792
ACCURACY	Additive Adj	Mean	0.1536	0.1561	0.1800	0.2658	0.1830	0.1478	0.1490	0.2556	0.2682
ACCURACY	Additive Adj	90 th Percentile	0.2525	0.2575	0.2972	0.4727	0.3127	0.2443	0.2473	0.4587	0.5019
ACCURACY	Multiplicative Adj	10 th Percentile	0.0733	0.0736	0.0886	0.1150	0.0890	0.0692	0.0707	0.0804	0.0815
ACCURACY	Multiplicative Adj	Median	0.1364	0.1382	0.1648	0.2326	0.1639	0.1272	0.1292	0.1663	0.1725
ACCURACY	Multiplicative Adj	Mean	0.1529	0.1558	0.5140	0.2658	0.2384	0.1501	0.1450	0.2841	0.2701
ACCURACY	Multiplicative Adj	90 th Percentile	0.2584	0.2600	0.3330	0.4727	0.3483	0.2455	0.2464	0.4710	0.4704
ACCURACY	Capped Adjustment	10 th Percentile	0.0759	0.0793	0.0946	0.1118	0.0908	0.0724	0.0740	0.0831	0.0837
ACCURACY	Capped Adjustment	Median	0.1372	0.1418	0.1616	0.2120	0.1605	0.1291	0.1334	0.1686	0.1720
ACCURACY	Capped Adjustment	Mean	0.1514	0.1575	0.1784	0.2344	0.1832	0.1451	0.1486	0.2305	0.2453
ACCURACY	Capped Adjustment	90 th Percentile	0.2471	0.2575	0.2909	0.3964	0.3127	0.2415	0.2459	0.4135	0.4448

			PJM Economic	PJM (m4of6)	PJM NWS	PJM (SameDay)	PJM WS	ISONE	CAISO (10	WkEnd (M2 of 4)	WkEnd (H2
Metric	Baseline	Statistic	Leononne	(114010)	(composy)	(Same Day)	(compbay)		01 10)	(1012 01 4)	013)
Sample	Medium Variability	count	1250	1250	1250	1250	1250	1250	1250	1250	1250
VARIABILITY	Unadjusted	10 th Percentile	0.0996	0.1036	0.1000	0.0737	0.1075	0.0970	0.1002	0.1057	0.1064
VARIABILITY	Unadjusted	Median	0.1693	0.1733	0.1704	0.1670	0.1750	0.1661	0.1714	0.2089	0.2183
VARIABILITY	Unadjusted	Mean	0.1812	0.1858	0.1858	0.1975	0.2008	0.1774	0.1821	0.2686	0.2933
VARIABILITY	Unadjusted	90 th Percentile	0.2855	0.2923	0.3003	0.3793	0.3357	0.2757	0.2817	0.4589	0.5216
VARIABILITY	Additive Adj	10 th Percentile	0.0767	0.0770	0.0904	0.1047	0.0907	0.0728	0.0743	0.0783	0.0820
VARIABILITY	Additive Adj	Median	0.1376	0.1400	0.1601	0.1981	0.1611	0.1316	0.1338	0.1661	0.1769
VARIABILITY	Additive Adj	Mean	0.1524	0.1550	0.1791	0.2271	0.1822	0.1465	0.1480	0.2514	0.2631
VARIABILITY	Additive Adj	90 th Percentile	0.2506	0.2539	0.2947	0.4039	0.3109	0.2412	0.2445	0.4556	0.4879
VARIABILITY	Multiplicative Adj	10 th Percentile	0.0725	0.0735	0.0879	0.1047	0.0878	0.0689	0.0704	0.0792	0.0806
VARIABILITY	Multiplicative Adj	Median	0.1354	0.1375	0.1635	0.1981	0.1625	0.1266	0.1287	0.1650	0.1686
VARIABILITY	Multiplicative Adj	Mean	0.1516	0.1547	0.5106	0.2271	0.2367	0.1492	0.1442	0.2802	0.2652
VARIABILITY	Multiplicative Adj	90 th Percentile	0.2568	0.2599	0.3313	0.4039	0.3476	0.2433	0.2453	0.4626	0.4664
VARIABILITY	Capped Adjustment	10 th Percentile	0.0757	0.0785	0.0944	0.0989	0.0906	0.0714	0.0734	0.0821	0.0827
VARIABILITY	Capped Adjustment	Median	0.1362	0.1406	0.1612	0.1861	0.1601	0.1274	0.1319	0.1665	0.1689
VARIABILITY	Capped Adjustment	Mean	0.1503	0.1555	0.1775	0.2136	0.1824	0.1430	0.1466	0.2266	0.2407
VARIABILITY	Capped Adjustment	90 th Percentile	0.2464	0.2522	0.2887	0.3813	0.3121	0.2383	0.2391	0.4083	0.4414

Table 93 Variability (Medium Load Variable Customers): Distribution Statistics 1PM-7PM

Table 94 Bias (High Load Variable Customers): Distribution Statistics 1PM-7PM

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO (10	WkEnd	WkEnd (H2
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		of 10)	(M2 of 4)	of 3)
Sample	High Variability	count	243	243	243	243	243	243	243	243	243
BIAS	Unadjusted	10 th Percentile	-0.0390	-0.0961	-0.0587	-0.0990	-0.0571	-0.1091	-0.1038	-0.1897	-0.0325
BIAS	Unadjusted	Median	0.0060	-0.0458	-0.0099	-0.0056	0.0006	-0.0550	-0.0562	-0.0356	0.0624
BIAS	Unadjusted	Mean	0.0135	-0.0422	-0.0113	-0.0104	-0.0006	-0.0507	-0.0521	-0.0525	0.3054
BIAS	Unadjusted	90 th Percentile	0.0795	0.0190	0.0298	0.0635	0.0574	0.0059	0.0026	0.0602	0.2537
BIAS	Additive Adj	10 th Percentile	-0.0117	-0.0322	-0.0197	-0.1065	-0.0344	-0.0258	-0.0246	-0.0690	-0.0635
BIAS	Additive Adj	Median	0.0256	0.0087	0.0198	0.0920	0.0154	0.0133	0.0123	0.0090	0.0173
BIAS	Additive Adj	Mean	0.0263	0.0086	0.0181	0.1329	0.0128	0.0129	0.0131	0.0961	0.1157
BIAS	Additive Adj	90 th Percentile	0.0649	0.0487	0.0546	0.4258	0.0568	0.0518	0.0498	0.1635	0.1852
BIAS	Multiplicative Adj	10 th Percentile	-0.0010	-0.0273	-0.0053	-0.1065	-0.0194	-0.0254	-0.0279	-0.0583	-0.0372
BIAS	Multiplicative Adj	Median	0.0255	0.0082	0.0358	0.0920	0.0299	0.0054	0.0070	0.0157	0.0256
BIAS	Multiplicative Adj	Mean	0.0324	0.0156	0.1266	0.1329	0.1178	0.1118	0.0070	0.0839	0.1092
BIAS	Multiplicative Adj	90 th Percentile	0.0721	0.0531	0.1638	0.4258	0.1274	0.0399	0.0426	0.2030	0.2043
BIAS	Capped Adjustment	10 th Percentile	-0.0246	-0.0758	-0.0454	-0.0865	-0.0644	-0.0689	-0.0747	-0.1774	-0.0462
BIAS	Capped Adjustment	Median	0.0107	-0.0234	-0.0046	0.0349	-0.0109	-0.0204	-0.0306	-0.0379	0.0213
BIAS	Capped Adjustment	Mean	0.0154	-0.0265	-0.0060	0.0535	-0.0140	-0.0217	-0.0285	-0.0558	0.2231
BIAS	Capped Adjustment	90 th Percentile	0.0669	0.0214	0.0302	0.2231	0.0349	0.0219	0.0133	0.0398	0.1828

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO (10	WkEnd	WkEnd (H2
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(SameDay)	(CompDay)		of 10)	(M2 of 4)	of 3)
Sample	High Variability	count	243	243	243	243	243	243	243	243	243
ACCURACY	Unadjusted	10 th Percentile	0.1963	0.2120	0.1820	0.1303	0.2906	0.2284	0.2231	0.1797	0.2159
ACCURACY	Unadjusted	Median	0.3101	0.3218	0.3057	0.2570	0.4414	0.3204	0.3252	0.3792	0.3884
ACCURACY	Unadjusted	Mean	0.3188	0.3317	0.3314	0.2948	0.4418	0.3288	0.3336	0.5283	1.4958
ACCURACY	Unadjusted	90 th Percentile	0.4439	0.4464	0.5051	0.5092	0.5766	0.4267	0.4322	1.0166	1.2505
ACCURACY	Additive Adj	10 th Percentile	0.1473	0.1488	0.1752	0.2004	0.1987	0.1452	0.1449	0.1434	0.1591
ACCURACY	Additive Adj	Median	0.2664	0.2698	0.3101	0.3999	0.3363	0.2567	0.2654	0.3428	0.3497
ACCURACY	Additive Adj	Mean	0.2842	0.2872	0.3376	0.4261	0.3547	0.2741	0.2762	0.6124	0.6390
ACCURACY	Additive Adj	90 th Percentile	0.4416	0.4415	0.5256	0.6903	0.5310	0.4253	0.4236	1.1068	1.1271
ACCURACY	Multiplicative Adj	10 th Percentile	0.1412	0.1427	0.1660	0.2004	0.1900	0.1318	0.1324	0.1396	0.1580
ACCURACY	Multiplicative Adj	Median	0.2627	0.2692	0.3401	0.3999	0.3559	0.2443	0.2484	0.3456	0.3543
ACCURACY	Multiplicative Adj	Mean	0.2993	0.3242	0.9324	0.4261	0.8706	3.1656	0.2709	0.6337	0.6418
ACCURACY	Multiplicative Adj	90 th Percentile	0.4925	0.4766	1.0442	0.6903	0.9427	0.4143	0.4165	1.1772	1.1588
ACCURACY	Capped Adjustment	10 th Percentile	0.1518	0.1594	0.1682	0.1678	0.2451	0.1660	0.1597	0.1546	0.1681
ACCURACY	Capped Adjustment	Median	0.2701	0.2874	0.3057	0.3081	0.3884	0.2613	0.2803	0.3429	0.3417
ACCURACY	Capped Adjustment	Mean	0.2806	0.2930	0.3208	0.3387	0.3917	0.2745	0.2849	0.4761	1.2328
ACCURACY	Capped Adjustment	90 th Percentile	0.4027	0.4175	0.4944	0.5231	0.5316	0.3862	0.3988	1.0046	1.0620

Table 95 Accuracy (High Load Variable Customers): Distribution Statistics 1PM-7PM

Table 96 Variability (High Load Variable Customers): Distribution Statistics 1PM-7PM

			PJM	PJM	PJM NWS	PJM	PJM WS	ISONE	CAISO (10	WkEnd	WkEnd (H2
Metric	Baseline	Statistic	Economic	(m4of6)	(CompDay)	(Same Day)	(CompDay)		of 10)	(M2 of 4)	of 3)
Sample	High Variability	count	243	243	243	243	243	243	243	243	243
VARIABILITY	Unadjusted	10 th Percentile	0.1946	0.2014	0.1810	0.1290	0.2898	0.2211	0.2160	0.1745	0.2131
VARIABILITY	Unadjusted	Median	0.3073	0.3174	0.3044	0.2496	0.4405	0.3145	0.3184	0.3715	0.3836
VARIABILITY	Unadjusted	Mean	0.3158	0.3257	0.3292	0.2885	0.4395	0.3214	0.3265	0.5172	1.4677
VARIABILITY	Unadjusted	90 th Percentile	0.4374	0.4417	0.5004	0.5014	0.5770	0.4240	0.4303	1.0181	1.2063
VARIABILITY	Additive Adj	10 th Percentile	0.1457	0.1484	0.1739	0.1714	0.1968	0.1427	0.1441	0.1399	0.1571
VARIABILITY	Additive Adj	Median	0.2623	0.2674	0.3076	0.3288	0.3343	0.2551	0.2614	0.3421	0.3480
VARIABILITY	Additive Adj	Mean	0.2817	0.2853	0.3358	0.3601	0.3530	0.2718	0.2742	0.5905	0.6139
VARIABILITY	Additive Adj	90 th Percentile	0.4364	0.4404	0.5254	0.5835	0.5301	0.4238	0.4237	1.1029	1.1257
VARIABILITY	Multiplicative Adj	10 th Percentile	0.1400	0.1422	0.1644	0.1714	0.1859	0.1298	0.1309	0.1358	0.1555
VARIABILITY	Multiplicative Adj	Median	0.2578	0.2680	0.3359	0.3288	0.3554	0.2426	0.2473	0.3449	0.3453
VARIABILITY	Multiplicative Adj	Mean	0.2964	0.3220	0.9222	0.3601	0.8600	3.1643	0.2695	0.6196	0.6255
VARIABILITY	Multiplicative Adj	90 th Percentile	0.4899	0.4749	1.0184	0.5835	0.9333	0.4107	0.4149	1.1664	1.1457
VARIABILITY	Capped Adjustment	10 th Percentile	0.1484	0.1584	0.1677	0.1604	0.2436	0.1631	0.1585	0.1545	0.1664
VARIABILITY	Capped Adjustment	Median	0.2673	0.2851	0.3012	0.2813	0.3840	0.2559	0.2774	0.3328	0.3360
VARIABILITY	Capped Adjustment	Mean	0.2783	0.2894	0.3194	0.3133	0.3895	0.2712	0.2811	0.4660	1.2128
VARIABILITY	Capped Adjustment	90 th Percentile	0.3983	0.4035	0.4896	0.5081	0.5306	0.3798	0.3957	0.9685	1.0630

C. Appendix – Results for Highly Variable Load Customers

In this section we highlight the results for customers with highly variable load. Highly variable load resources are defined as those customers with a Theil's U statistic greater than 0.4 (i.e., top 15% of resources in sample). These customers are excluded from the results reported in the body of the report.

Baseline Type	PJN1H4 OF S	Middle 4 of 6	PIN Comp Day	PINIS ^{ame} Day	PJM WeathSens	ISONE	C4150 10 of 10	N.	Weekend hiz of a	Weekend H2 of 3	
Unadjusted Baseline	0.483	0.491	0.496	0.420	0.677	0.492	0.481	p	0.567	0.603	
Additive Adjustment	0.420	0.423	0.474	0.568	0.501	0.402	0.406	ker	0.459	0.490	
Multiplicative Adjustment	0.434	0.432	0.601	0.568	0.624	0.391	0.398	/ee	0.499	0.523	
Multiplicative Adjustment (Cap)	0.436	0.453	0.477	0.449	0.618	0.436	0.444	3	0.518	0.539	

Table 97 Accuracy: Highly Variable Customers Overall

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

Table 98 Bias: Highly Variable Customers Overall

Baseline Type	PINH 4 OF S	Middled of 6	PIN Comp Day	^L IMS ^{ame} Da _L	PJM WeathSens	^{ISONE}	C4/50 10 of 10	<u>N</u>	Weekend M2 of a	Weekend H2 of 3	
Unadjusted Baseline	0.026	0.044	0.004	0.026	0.004	0.045	0.056	p	0.054	0.078	
Additive Adjustment	0.038	0.015	0.030	0.091	0.031	0.011	0.013	ken	0.012	0.041	
Multiplicative Adjustment	0.042	0.014	0.069	0.091	0.059	0.008	0.008	/ee	0.031	0.059	
Multiplicative Adjustment (Cap)	0.023	0.035	0.003	0.013	0.021	0.026	0.037	5	0.051	0.046	

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

			e c								
Baseline Type	PJNH HA OFS	Widdle 4 of 6	PIN Comp Day	PJN1 Same Day	PIN WeathSens	lsone	CAISO 10 of 10	Me	Weekend Nr2 of a	Weekend H2 of 3	
Unadjusted Baseline	0.478	0.483	0.494	0.408	0.672	0.486	0.478	p	0.539	0.576	
Additive Adjustment	0.419	0.417	0.472	0.492	0.497	0.400	0.405	ken	0.453	0.473	
Multiplicative Adjustment	0.428	0.432	0.596	0.492	0.618	0.387	0.396	/ee	0.495	0.505	
Multiplicative Adjustment (Cap)	0.431	0.448	0.466	0.419	0.617	0.430	0.437	3	0.510	0.525	

Table 99 Variability: Highly Variable Customers Overall

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

Size	Baseline Type	PIINH4 OF S	Middle 4 of 6	PIN Comp Day	PJMS ^{ame Da} V	PJM WeathSens	^{isone}	C4150 TO OF TO	Weekend Weekend hz of a	Weekend H2 of 3	/
	Unadjusted Baseline	0.421	0.433	0.444	0.449	0.648	0.447	0.440	0.512	0.571	
Up to 500 kW	Additive Adjustment	0.383	0.388	0.425	0.576	0.474	0.373	0.376	0.467	0.490	
(n=233)	Multiplicative Adjustment	0.363	0.369	0.468	0.576	0.522	0.343	0.349	0.490	0.497	
<u>۲</u>	Multiplicative Adjustment (Cap)	0.389	0.405	0.412	0.462	0.581	0.388	0.407	0.465	0.500	
	Unadjusted Baseline	0.544	0.546	0.587	0.444	0.766	0.558	0.556	0.672	0.755	
500 to 2,000 kW	Additive Adjustment	0.485	0.492	0.571	0.616	0.609	0.480	0.475	0.484	0.629	
(n=101)	Multiplicative Adjustment	0.635	0.525	0.998	0.616	0.961	0.502	0.514	0.564	0.621	
	Multiplicative Adjustment (Cap)	0.509	0.510	0.561	0.477	0.707	0.510	0.493	\$ 0.612	0.616	
	Unadjusted Baseline	0.542	0.533	0.584	0.313	0.681	0.517	0.507	0.522	0.512	
2,000 to 10,000 kW	Additive Adjustment	0.423	0.433	0.508	0.420	0.493	0.419	0.407	0.411	0.404	
(n=41)	Multiplicative Adjustment	0.434	0.465	0.730	0.420	0.770	0.403	0.404	0.488	0.490	
	Multiplicative Adjustment (Cap)	0.465	0.481	0.527	0.370	0.589	0.457	0.465	≤ 0.495	0.458	
Over 10,000 kW // (n=8)	Unadjusted Baseline	0.555	0.523	0.528	0.222	0.692	0.666	0.476	0.609	0.596	
	Additive Adjustment	0.365	0.354	0.500	0.319	0.437	0.335	0.340	0.457	0.460	
	Multiplicative Adjustment	0.440	0.373	0.558	0.319	0.494	0.400	0.355	0.492	0.508	
	Multiplicative Adjustment (Cap)	0.457	0.484	0.487	0.262	0.559	0.590	0.392	\$ 0.539	0.514	

Table 100 Accuracy: Highly Variable Customers by Customer Size

Color coded, green = good, rank within each category. Weekend baselines are color coded independently.

Table 101 Bias: Highly Variable Customers by Customer Size

Size	Baseline Type	PIIN Ha OF S	Middle 4 of 6	PIN Comp Day	PINS ^{ame Day}	PIN WeathSens	lsone	c4120 TO OL TO	Weetend Weetend M2 of S	Weekend H2 of 3	
	Unadjusted Baseline	0.021	0.046	0.004	0.039	0.002	0.049	0.061	e 0.055	0.069	
Up to 500 kW	Additive Adjustment	0.038	0.015	0.031	0.140	0.033	0.012	0.014	0.008	0.031	
(n=233)	Multiplicative Adjustment	0.037	0.009	0.058	0.140	0.052	0.002	0.005	0.026	0.048	
	Multiplicative Adjustment (Cap)	0.020	0.035	0.001	0.029	0.023	0.027	0.040	S 0.050	0.043	
	Unadjusted Baseline	0.043	0.044	0.002	0.021	0.020	0.040	0.063	0.054	0.106	
500 to 2,000 kW	Additive Adjustment	0.041	0.015	0.024	0.052	0.036	0.016	0.014	0.024	0.068	
(n=101)	Multiplicative Adjustment	0.060	0.019	0.111	0.052	0.084	0.011	0.015	0.051	0.078	
	Multiplicative Adjustment (Cap)	0.033	0.037	0.003	0.006	0.020	0.017	0.043	\$ 0.051	0.077	
	Unadjusted Baseline	0.060	0.014	0.010	0.003	0.005	0.025	0.017	0.042	0.063	
2,000 to 10,000 kW	Additive Adjustment	0.009	0.005	0.023	0.011	0.021	0.006	0.011	0.016	0.028	
(n=41)	Multiplicative Adjustment	0.043	0.029	0.098	0.011	0.094	0.012	0.016	8 0.027	0.047	
	Multiplicative Adjustment (Cap)	0.036	0.018	0.018	0.016	0.011	0.014	0.007	≥ 0.051	0.041	
аналанан айтан а	Unadjusted Baseline	0.045	0.040	0.010	0.050	0.119	0.171	0.036	0.082	0.062	
Over 10,000 kW (n=8)	Additive Adjustment	0.035	0.008	0.004	0.015	0.013	0.017	0.006	0.002	0.085	
	Multiplicative Adjustment	0.053	0.005	0.037	0.015	0.022	0.041	0.008	0.044	0.096	
	Multiplicative Adjustment (Cap)	0.015	0.034	0.007	0.040	0.069	0.174	0.032	≤ 0.058	0.082	

Color coded, green = good, rank within each category. Weekend baselines are color coded independently.

Size	Baseline Type	P.INTH4 OF 5	^{Inidale 4} of 6	PIN Comp Day	PINS ^{ame Day}	PINN Weathsens	^{ISONE}	Calso to of Lo	We	Weekend M2 of a	Weekend H2 of 3	
	Unadjusted Baseline	0.418	0.430	0.443	0.426	0.642	0.441	0.434	P	0.512	0.537	
Up to 500 kW	Additive Adjustment	0.378	0.388	0.420	0.494	0.473	0.366	0.375	ē	0.457	0.473	
(n=233)	Multiplicative Adjustment	0.358	0.368	0.463	0.494	0.516	0.342	0.349)e	0.485	0.492	
	Multiplicative Adjustment (Cap)	0.385	0.403	0.410	0.438	0.579	0.388	0.408	5	0.458	0.483	
	Unadjusted Baseline	0.535	0.541	0.585	0.435	0.761	0.558	0.545	p	0.644	0.731	
500 to 2,000 kW	Additive Adjustment	0.486	0.483	0.569	0.563	0.606	0.480	0.475	ken	0.467	0.614	
(n=101)	Multiplicative Adjustment	0.629	0.520	0.987	0.563	0.962	0.501	0.513	/ee	0.563	0.589	
	Multiplicative Adjustment (Cap)	0.507	0.507	0.561	0.450	0.708	0.494	0.493	\$	0.601	0.607	
	Unadjusted Baseline	0.519	0.528	0.566	0.311	0.677	0.517	0.501	p	0.513	0.488	
2,000 to 10,000 kW	Additive Adjustment	0.416	0.429	0.502	0.418	0.492	0.419	0.407	ker	0.402	0.399	
(n=41)	Multiplicative Adjustment	0.428	0.459	0.707	0.418	0.710	0.402	0.398	ee	0.488	0.478	
	Multiplicative Adjustment (Cap)	0.462	0.456	0.506	0.326	0.586	0.449	0.456	3	0.490	0.451	
	Unadjusted Baseline	0.538	0.522	0.525	0.221	0.686	0.519	0.429	Ρ	0.599	0.582	
Over 10,000 kW	Additive Adjustment	0.362	0.354	0.498	0.318	0.432	0.333	0.339	ken	0.443	0.439	
(n=8)	Multiplicative Adjustment	0.434	0.372	0.557	0.318	0.494	0.398	0.354	ee	0.476	0.485	
	Multiplicative Adjustment (Cap)	0.448	0.454	0.485	0.261	0.542	0.479	0.386	\$	0.529	0.496	

Table 102 Variability: Highly Variable Customers by Customer Size

Color coded, green = good, rank within each category. Weekend baselines are color coded independently.

Table 103 Accuracy: Highly Variable Customers by Weather Sensitivity

Weath Sens?	Baseline Type	P.IN.H4 OF S	Middle4 of 6	^P IN COMP Day	PJNISame Day	PJM WeathSens	¹⁵ ONE	^{C4/SO 20} 0 ^{5 20}	- M	Weekend M2 of 4	Weekend H2 of 3	
	Unadjusted Baseline	0.470	0.479	0.480	0.415	0.676	0.469	0.478	g	0.558	0.582	
No (n=155)	Additive Adjustment	0.413	0.419	0.474	0.580	0.516	0.399	0.403	ĥ	0.499	0.547	
100 (11-133)	Multiplicative Adjustment	0.422	0.421	0.597	0.580	0.600	0.374	0.389	/ee	0.588	0.589	
	Multiplicative Adjustment (Cap)	0.408	0.438	0.453	0.443	0.617	0.419	0.442	5	0.516	0.532	
	Unadjusted Baseline	0.490	0.504	0.507	0.433	0.678	0.508	0.497	ō	0.568	0.637	
Yes (n=228)	Additive Adjustment	0.429	0.437	0.474	0.557	0.479	0.419	0.410	ken	0.413	0.460	
	Multiplicative Adjustment	0.443	0.449	0.603	0.557	0.643	0.401	0.401	/ee	0.484	0.474	
	Multiplicative Adjustment (Cap)	0.449	0.465	0.479	0.450	0.618	0.456	0.452	3	0.519	0.542	

Color coded, green = good, rank within each category. Weekend baselines are color coded independently.

Table 104 Bias: Highly Variable Customers by Weather Sensitivity

Weath Sens?	Baseline Type	P.M.H.4 OFS	Middle 4 of 6	^P IN Comp Day	PJNS ^{ame Da} y	PJM WeathSens	¹⁵ ONE	C4/50 20 of 20	N.	Weelend In2 of 4	Weekend H2 of 3	
	Unadjusted Baseline	0.033	0.035	0.001	0.007	0.013	0.036	0.049	g	0.052	0.102	
No (n-155)	Additive Adjustment	0.039	0.013	0.032	0.093	0.021	0.012	0.014	ker	0.020	0.049	
NO (II=155)	Multiplicative Adjustment	0.043	0.014	0.076	0.093	0.055	0.008	0.008	/ee	0.042	0.075	
	Multiplicative Adjustment (Cap)	0.028	0.029	0.001	0.025	0.006	0.015	0.029	5	0.054	0.061	
	Unadjusted Baseline	0.017	0.053	0.007	0.040	0.005	0.067	0.064	σ	0.057	0.064	
Yes (n=228)	Additive Adjustment	0.037	0.015	0.027	0.088	0.035	0.010	0.013	ken	0.008	0.035	
	Multiplicative Adjustment	0.042	0.014	0.064	0.088	0.063	0.006	0.010	/ee	0.025	0.048	
	Multiplicative Adjustment (Cap)	0.018	0.040	0.003	0.004	0.025	0.037	0.044	3	0.050	0.040	

Color coded, green = good, rank within each category. Weekend baselines are color coded independently.

Weath Sens?	Baseline Type	PIN H4 OFS	Middle 4 of 6	PJM Comp Day	P.M.Same Day	PJM WeathSens	¹⁵ ONE	Calso to of to	M ²	Weekend M2 of a	Weekend H2 of 3	
	Unadjusted Baseline	0.466	0.469	0.473	0.400	0.666	0.467	0.474	p	0.536	0.560	
	Additive Adjustment	0.410	0.415	0.472	0.477	0.511	0.399	0.403	ker	0.497	0.547	
NO (II=155)	Multiplicative Adjustment	0.421	0.420	0.596	0.477	0.600	0.371	0.388	/ee	0.566	0.576	
	Multiplicative Adjustment (Cap)	0.408	0.438	0.454	0.415	0.615	0.416	0.436	>	0.509	0.503	
	Unadjusted Baseline	0.481	0.501	0.508	0.413	0.675	0.498	0.495	p	0.557	0.608	
Yes (n=228)	Additive Adjustment	0.424	0.432	0.472	0.509	0.479	0.417	0.411	ken	0.410	0.456	
	Multiplicative Adjustment	0.435	0.447	0.595	0.509	0.639	0.401	0.399	/ee	0.480	0.458	
	Multiplicative Adjustment (Cap)	0.446	0.455	0.479	0.420	0.618	0.449	0.447	3	0.516	0.531	

Table 105 Variability: Highly Variable Customers by Weather Sensitivity

Color coded, green = good, rank within each category. Weekend baselines are color coded independently.

D. Appendix – Results for Customers up to 175 kW

In this section we highlight the results for customers with a 2012 maximum demand of up to 175 kW. These customers were originally excluded from the analysis following discussions with AEMO regarding the size a customer that would need to be to make it economically feasible to participate in the DRM.

Baseline Type	P.In. Ha of	Middle 4 06.	P.In Comp.	Len Same Suld	APU- NPU-	^{IS} ONE	C4ISO 2005	Weekend	Weekend no.	Weekend HS	5 JO 21.
Unadjusted Baseline	0.134	0.138	0.127	0.124	0.135	0.136	0.136	s	0.162	0.162	
Additive Adjustment	0.110	0.109	0.130	0.147	0.129	0.103	0.105	pua	0.128	0.132	
Multiplicative Adjustment	0.113	0.113	0.135	0.147	0.135	0.105	0.107	şek	0.134	0.137	
Multiplicative Adjustment (Cap)	0.112	0.112	0.129	0.142	0.130	0.105	0.107	š	0.130	0.134	

Table 106 Accuracy: Customers up to 175 kW

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

Table 107 Bias: Customers up to 175 kW

	N Ha OF C	dole 4 of	N Comp.	Vedu - Nav	h Weath	WE "USens	⁶⁰ 01005	ot in	^{teken} d has	elend H2 of
Baseline Type	Wra	Mi	ฟาล	Wra	Wra	ls _C	ঠ	Ň	ħ,	พ้
Unadjusted Baseline	0.004	0.019	0.006	0.025	0.003	0.026	0.020	s	0.021	0.019
Additive Adjustment	0.009	0.001	0.001	0.026	0.004	0.001	0.000	Bng	0.000	0.012
Multiplicative Adjustment	0.010	0.001	0.005	0.026	0.007	0.001	0.001	ek.	0.004	0.015
Multiplicative Adjustment (Cap)	0.008	0.004	0.001	0.040	0.002	0.004	0.003	š	0.005	0.014

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

Baseline Type	PINH4 OF	Middle 4 oc.	PIN COMP.	Nen-	Pun Weath	ISONE	Caliso Joor.	Weekends	Weekendas	Weekend ks	E 40 71.
Unadjusted Baseline	0.133	0.134	0.127	0.100	0.134	0.130	0.132	ş	0.157	0.159	
Additive Adjustment	0.109	0.108	0.129	0.119	0.128	0.102	0.104	enc	0.127	0.130	
Multiplicative Adjustment	0.112	0.112	0.135	0.119	0.135	0.105	0.107	sek 🖌	0.132	0.133	
Multiplicative Adjustment (Cap)	0.110	0.111	0.128	0.111	0.129	0.104	0.106	š	0.129	0.131	

Table 108 Variability: Customers up to 175 kW

Color coded, green = good, rank over all rows combined. Weekend baselines are color coded independently.

Weather Sensitive	Baseline Type	P.IM.Haore	Middle 4 06.	PIN COMD C	PINSame D	Vec Vec	Snocin Snocin	C4150 20 05 20	Weekends Weekend A.	Weekend H3	E Jo z
Not	Unadjusted Baseline	0.097	0.100	0.099	0.100	0.115	0.099	0.099	0.116	0.114	
Weather	Additive Adjustment	0.086	0.085	0.102	0.108	0.105	0.081	0.082	0.100	0.104	
Soncitivo	Multiplicative Adjustment	0.087	0.088	0.106	0.108	0.108	0.082	0.084	0.103	0.105	
Sensitive	Multiplicative Adjustment (Cap)	0.087	0.087	0.101	0.108	0.108	0.082	0.083	0.101	0.106	
	Unadjusted Baseline	0.171	0.177	0.163	0.148	0.153	0.175	0.176	0.213	0.209	
Weather	Additive Adjustment	0.136	0.137	0.159	0.189	0.151	0.127	0.130 a	0.160	0.163	
Sensitive	Multiplicative Adjustment	0.141	0.142	0.168	0.189	0.161	0.130	0.132	0.171	0.168	
	Multiplicative Adjustment (Cap)	0.137	0.140	0.155	0.178	0.151	0.130	0.133	0.168	0.165	

Table 109 Accuracy: Customers up to 175 kW by Weather Sensitivity

Color coded, green = good, rows are ranked within each category. Weekend baselines are color coded independently.

Table 110 Bias: Customers up to 175 kW by Weather Sensitivity

Weather Sensitive	Baseline Type	P.In.Haore	Middle 4 oc	Puncoman 2 Punco	PINSame C	Aer Nearth	suac.	C4150 10 of 10	Weelends Weelends	Weekend L.	5 O 21
Not	Unadjusted Baseline	0.005	0.011	0.005	0.013	0.002	0.015	0.011	0.012	0.017	
Weather	Additive Adjustment	0.007	0.000	0.001	0.014	0.002	0.000	0.000	0.001	0.009	
Consitivo	Multiplicative Adjustment	0.007	0.001	0.003	0.014	0.004	0.001	0.001	0.003	0.011	
Sensitive	Multiplicative Adjustment (Cap)	0.006	0.001	0.001	0.019	0.001	0.001	0.001	0.001	0.011	
	Unadjusted Baseline	0.002	0.034	0.010	0.049	0.005	0.044	0.034	0.037	0.022	
Weather	Additive Adjustment	0.013	0.001	0.002	0.050	0.006	0.003	0.001	0.002	0.015	
Sensitive	Multiplicative Adjustment	0.015	0.003	0.009	0.050	0.011	0.000	0.001	0.006	0.021	
	Multiplicative Adjustment (Cap)	0.009	0.010	0.001	0.066	0.003	0.013	0.010	0.014	0.018	

Color coded, green = good, rows are ranked by category. Weekend baselines are color coded independently.

Weekend H2 of 3 end his of 4 Pin WeathSens C4150 10 of 10 PIN Comp Day Pins Same Day Inidale 4 of 6 PJIN H4 OF S ISONE Week Weather Sensitive Baseline Type Unadjusted Baseline 0.096 0.098 0.098 0.080 0.115 0.096 0.097 0.081 0.083 0.082 0.097 0.113 0.111 Not 0.085 0.085 0.080 0.099 Additive Adjustment 0.102 0.091 0.105 0.101 Weather Multiplicative Adjustment 0.087 0.087 0.105 0.091 0.108 0.082 0.103 0.103 Sensitive Multiplicative Adjustment (Cap) 0.086 0.086 0.089 0.107 0.081 0.100 0.103 0.101 Unadjusted Baseline 0.116 0.173 0.162 0.152 0.170 0.207 0.170 0.167 0.20 Weekends Weather Additive Adjustment 0.134 0.135 0.159 0.146 0.150 0.126 0.129 0.159 0.160 Sensitive Multiplicative Adjustment 0.139 0.140 0.166 0.146 0.159 0.130 0.132 0.166 0.165 0.136 0.138 0.154 0.135 0.150 0.129 0.131 0.164 0.162 Multiplicative Adjustment (Cap)

Table 111 Variability: Customers up to 175 kW by Weather Sensitivity

Color coded, green = good, rows are ranked by category. Weekend baselines are color coded independently.

Variablity	Baseline Type	PJINH4 OF E	Middle 4 06	P.IM COMP.C	Vanne 2 Vinsame 2	Ven Weatho	^{IS} ONE	C4150 2000	07.5 M	^{teltends}	Weekend L.	£ 10 2.
	Unadjusted Baseline	0.079	0.080	0.078	0.073	0.081	0.080	0.080	st	0.090	0.087	
Low	Additive Adjustment	0.068	0.068	0.080	0.083	0.080	0.064	0.066	enc	0.076	0.077	
LOW	Multiplicative Adjustment	0.070	0.069	0.082	0.083	0.083	0.065	0.066	sek	0.078	0.078	
	Multiplicative Adjustment (Cap)	0.069	0.068	0.081	0.083	0.080	0.064	0.065	Ň	0.078	0.077	l
	Unadjusted Baseline	0.147	0.152	0.143	0.137	0.149	0.147	0.148	s	0.180	0.178	
Madium	Additive Adjustment	0.123	0.123	0.146	0.161	0.143	0.116	0.119	enc	0.144	0.148	
weatum	Multiplicative Adjustment	0.126	0.127	0.152	0.161	0.150	0.118	0.120	sek	0.150	0.152	
	Multiplicative Adjustment (Cap)	0.123	0.125	0.142	0.153	0.144	0.116	0.118	Ň	0.145	0.147	l
High	Unadjusted Baseline	0.266	0.272	0.255	0.276	0.330	0.266	0.275	s	0.324	0.343	
	Additive Adjustment	0.231	0.230	0.264	0.325	0.281	0.221	0.223	end	0.293	0.311	
	Multiplicative Adjustment	0.230	0.236	0.279	0.325	0.300	0.216	0.219	sek	0.304	0.309	
	Multiplicative Adjustment (Cap)	0.232	0.240	0.249	0.285	0.294	0.222	0.233	Ň	0.286	0.300	

Table 112 Accuracy: Customers up to 175 kW by Load Variability

Table 113 Bias: Customers up to 175 kW by Load Variability

Variablity	Baseline Type	P.III.Ha OF E	Middle 4	P.IM COM.	Ve ^{Day}	Aeran.	ISONE	Calso to or	Weekens	Weekend a	Weekend L.	£ 40 Zu
	Unadjusted Baseline	0.002	0.011	0.004	0.013	0.001	0.016	0.011	ş	0.013	0.010	
Low	Additive Adjustment	0.005	0.000	0.001	0.027	7 0.003	0.000	0.000	e	0.001	0.007	
LOW	Multiplicative Adjustment	0.006	0.001	0.002	0.027	7 0.004	0.001	0.001	ă 🗌	0.003	0.008	
	Multiplicative Adjustment (Cap)	0.006	0.000	0.002	0.030	0.003	0.000	0.000	š	0.000	0.009	l
	Unadjusted Baseline	0.004	0.022	0.007	0.033	0.004	0.033	0.024	s	0.026	0.023	
Modium	Additive Adjustment	0.010	0.001	0.001	0.035	0.003	0.002	0.001	enc	0.000	0.013	
wearum	Multiplicative Adjustment	0.012	0.002	0.006	0.035	0.008	0.000	0.000	sek	0.005	0.017	
	Multiplicative Adjustment (Cap)	0.008	0.005	0.001	0.048	0.002	0.006	0.005	Š	0.008	0.016	l
	Unadjusted Baseline	0.014	0.034	0.009	0.058	3 0.007	0.037	0.031	s	0.038	0.048	
High	Additive Adjustment	0.019	0.002	0.006	0.017	7 0.010	0.000	0.001	enc	0.004	0.022	
	Multiplicative Adjustment	0.023	0.001	0.020	0.017	7 0.024	0.000	0.001	ek 🗌	0.008	0.033	l
	Multiplicative Adjustment (Cap)	0.013	0.020	0.001	0.029	0.004	0.018	0.019	Š	0.029	0.032	l

Color coded, green = good, rows ranked by category. Weekend baselines are color coded independently.

Variablity	Baseline Type	P.M. Ha OFE	hriidale a of	P.In.Comp.	Puls Same C	Ven Weart	^{ISONE}	C4150 2000	OT IS	the sector of th	cekend Mrs	Weekend H2	. of 3
	Unadjusted Baseline	0.078	0.079	0.077	0.062	0.081	0.076	0.078	ş	0.	087	0.086	
Low	Additive Adjustment	0.068	0.068	0.080	0.071	0.079	0.064	0.065	enc	0.	076	0.075	
LOW	Multiplicative Adjustment	0.069	0.069	0.082	0.071	0.082	0.065	0.066	sek	0.	078	0.077	
	Multiplicative Adjustment (Cap)	0.068	0.068	0.081	0.070	0.080	0.063	0.065	Ň	0.	077	0.076	
	Unadjusted Baseline	0.146	0.148	0.142	0.111	0.148	0.142	0.145	s	0.	174	0.176	
Madium	Additive Adjustment	0.121	0.122	0.146	0.134	0.142	0.115	0.117	enc	0.	142	0.145	
weurum	Multiplicative Adjustment	0.125	0.126	0.151	0.134	0.149	0.117	0.119	sek	0.	147	0.149	
	Multiplicative Adjustment (Cap)	0.122	0.124	0.141	0.124	0.143	0.114	0.117	Ň	0.	143	0.144	
High I	Unadjusted Baseline	0.265	0.269	0.252	0.247	0.328	0.261	0.269	s	0.	319	0.331	
	Additive Adjustment	0.227	0.230	0.263	0.292	0.280	0.219	0.220	enc	0.	290	0.299	
	Multiplicative Adjustment	0.229	0.233	0.276	0.292	0.297	0.214	0.218	sek	0.	301	0.301	
	Multiplicative Adjustment (Cap)	0.229	0.239	0.249	0.261	0.294	0.217	0.229	Ň	0.	276	0.289	

Table 114 Variability: Customers up to 175 kW by Load Variability

Color coded, green = good, rows ranked by category. Weekend baselines are color coded independently.

E. Holidays

In this appendix we document the dates used as holidays by region.

Area	Holiday	Date1	Year	Date	Full_Date
ACT	New Year's Day	Monday 3 January *	2011	01/03/11	Monday, January 03, 2011
ACT	Australia Day	Wednesday 26 January	2011	01/26/11	Wednesday, January 26, 2011
ACT	Canberra Day	Monday 14 March	2011	03/14/11	Monday, March 14, 2011
ACT	Good Friday	Friday 22 April	2011	04/22/11	Friday, April 22, 2011
ACT	Saturday after Good Friday	Saturday 23 April	2011	04/23/11	Saturday, April 23, 2011
ACT	Easter Monday	Monday 25 April	2011	04/25/11	Monday, April 25, 2011
ACT	Anzac Day	Monday 25 April	2011	04/25/11	Monday, April 25, 2011
ACT	Additional public holiday	Tuesday 26 April**	2011	04/26/11	Tuesday, April 26, 2011
ACT	Queen's Birthday	Monday 13 June	2011	06/13/11	Monday, June 13, 2011
ACT	Labour Day	Monday 3 October	2011	10/03/11	Monday, October 03, 2011
ACT	Family and Community Day	Monday 10 October	2011	10/10/11	Monday, October 10, 2011
ACT	Christmas Day	Sunday 25 December***	2011	12/25/11	Sunday, December 25, 2011
ACT	Christmas Day	Monday 26 December*	2011	12/26/11	Monday, December 26, 2011
ACT	Boxing Day	Tuesday 27 December *	2011	12/27/11	Tuesday, December 27, 2011
ACT	New Year's Day	Sunday 1 January*	2012	01/01/12	Sunday, January 01, 2012
ACT	New Year's Day	Monday 2 January**	2012	01/02/12	Monday, January 02, 2012
ACT	Australia Day	Thursday 26 January	2012	01/26/12	Thursday, January 26, 2012
ACT	Canberra Day	Monday 12 March	2012	03/12/12	Monday, March 12, 2012
ACT	Good Friday	Friday 6 April	2012	04/06/12	Friday, April 06, 2012
ACT	Saturday after Good Friday	Saturday 7 April	2012	04/07/12	Saturday, April 07, 2012
ACT	Easter Monday	Monday 9 April	2012	04/09/12	Monday, April 09, 2012
ACT	Anzac Day	Wednesday 25 April	2012	04/25/12	Wednesday, April 25, 2012
ACT	Queen's Birthday	Monday 11 June	2012	06/11/12	Monday, June 11, 2012
ACT	Labour Day	Monday 1 October	2012	10/01/12	Monday, October 01, 2012
ACT	Family and Community Day	Monday 8 October	2012	10/08/12	Monday, October 08, 2012
ACT	Christmas Day	Tuesday 25 December	2012	12/25/12	Tuesday, December 25, 2012
ACT	Boxing Day	Wednesday 26 December	2012	12/26/12	Wednesday, December 26, 2012
ACT	New Year's Day	Tuesday 1 January	2013	01/01/13	Tuesday, January 01, 2013
ACT	Australia Day	Monday 28 January*	2013	01/28/13	Monday, January 28, 2013
ACT	Canberra Day	Monday 11 March	2013	03/11/13	Monday, March 11, 2013
ACT	Good Friday	Friday 29 March	2013	03/29/13	Friday, March 29, 2013
ACT	Easter Saturday	Saturday 30 March	2013	03/30/13	Saturday, March 30, 2013
ACT	Easter Monday	Monday 1 April	2013	04/01/13	Monday, April 01, 2013
ACT	Anzac Day	Thursday 25 April	2013	04/25/13	Thursday, April 25, 2013
ACT	Queen's Birthday	Monday 10 June	2013	06/10/13	Monday, June 10, 2013
ACT	Family and Community Day	Monday 30 September	2013	09/30/13	Monday, September 30, 2013
ACT	Labour Day	Monday 7 October	2013	10/07/13	Monday, October 07, 2013
ACT	Christmas Day	Wednesday 25 December	2013	12/25/13	Wednesday, December 25, 2013
ACT	Boxing Day	Thursday 26 December	2013	12/26/13	Thursday, December 26, 2013

Table 115 Holidays: Australian Capital Territory

Table 116 Holidays: New South Wales

Area	Holiday	Date1	Year	Date	Full Date
NSW	New Year's Day	Saturday 1 January and Monday 3 January *	2011	01/01/11	Saturday, January 01, 2011
NSW	New Year's Day	Saturday 1 January and Monday 3 January *	2011	01/03/11	Monday, January 03, 2011
NSW	Australia Day	Wednesday 26 January	2011	01/26/11	Wednesday, January 26, 2011
NSW	Good Friday	Friday 22 April	2011	04/22/11	Friday, April 22, 2011
NSW	Saturday after Good Friday	Saturday 23 April	2011	04/23/11	Saturday, April 23, 2011
NSW	Easter Sunday	Sunday 24 April	2011	04/24/11	Sunday, April 24, 2011
NSW	Anzac Day	Monday 25 April	2011	04/25/11	Monday, April 25, 2011
NSW	Easter Monday	Tuesday 26 April **	2011	04/26/11	Tuesday, April 26, 2011
NSW	Queen's Birthday	Monday 13 June	2011	06/13/11	Monday, June 13, 2011
NSW	Labour Day	Monday 3 October	2011	10/03/11	Monday, October 03, 2011
NSW	Christmas Day	Sunday 25 December ***	2011	12/25/11	Sunday, December 25, 2011
NSW	Christmas Day	Monday 26 December ****	2011	12/26/11	Monday, December 26, 2011
NSW	Boxing Day	Tuesday 27 December	2011	12/27/11	Tuesday, December 27, 2011
NSW	New Year's Day	Sunday 1 January	2012	01/01/12	Sunday, January 01, 2012
NSW	New Year's Day	Monday 2 January*	2012	01/02/12	Monday, January 02, 2012
NSW	Australia Day	Thursday 26 January	2012	01/26/12	Thursday, January 26, 2012
NSW	Good Friday	Friday 6 April	2012	04/06/12	Friday, April 06, 2012
NSW	Saturday after Good Friday	Saturday 7 April	2012	04/07/12	Saturday, April 07, 2012
NSW	Easter Sunday	Sunday 8 April	2012	04/08/12	Sunday, April 08, 2012
NSW	Easter Monday	Monday 9 April	2012	04/09/12	Monday, April 09, 2012
NSW	Anzac Day	Wednesday 25 April	2012	04/25/12	Wednesday, April 25, 2012
NSW	Queen's Birthday	Monday 11 June	2012	06/11/12	Monday, June 11, 2012
NSW	Bank Holiday**	Monday 6 August	2012	08/06/12	Monday, August 06, 2012
NSW	Labour Day	Monday 1 October	2012	10/01/12	Monday, October 01, 2012
NSW	Christmas Day	Tuesday 25 December	2012	12/25/12	Tuesday, December 25, 2012
NSW	Boxing Day	Wednesday 26 December	2012	12/26/12	Wednesday, December 26, 2012
NSW	New Year's Day	Tuesday 1 January	2013	01/01/13	Tuesday, January 01, 2013
NSW	Australia Day	Monday 28 January*	2013	01/28/13	Monday, January 28, 2013
NSW	Good Friday	Friday 29 March	2013	03/29/13	Friday, March 29, 2013
NSW	Easter Saturday	Saturday 30 March	2013	03/30/13	Saturday, March 30, 2013
NSW	Easter Sunday	Sunday 31 March	2013	03/31/13	Sunday, March 31, 2013
NSW	Easter Monday	Monday 1 April	2013	04/01/13	Monday, April 01, 2013
NSW	Anzac Day	Thursday 25 April	2013	04/25/13	Thursday, April 25, 2013
NSW	Queen's Birthday	Monday 10 June	2013	06/10/13	Monday, June 10, 2013
NSW	Bank Holiday	Monday 5 August**	2013	08/05/13	Monday, August 05, 2013
NSW	Labour Day	Monday 7 October	2013	10/07/13	Monday, October 07, 2013
NSW	Christmas Day	Wednesday 25 December	2013	12/25/13	Wednesday, December 25, 2013
NSW	Boxing Day	Thursday 26 December	2013	12/26/13	Thursday, December 26, 2013

Area	Holiday	Date1	Year	Date	Full Date
QLD	New Year's Day	Saturday 1 January and Monday 3 January *	2011	01/01/11	Saturday, January 01, 2011
QLD	New Year's Day	Saturday 1 January and Monday 3 January *	2011	01/03/11	Monday, January 03, 2011
QLD	Australia Day	Wednesday 26 January	2011	01/26/11	Wednesday, January 26, 2011
QLD	Good Friday	Friday 22 April	2011	04/22/11	Friday, April 22, 2011
QLD	Saturday after Good Friday	Saturday 23 April	2011	04/23/11	Saturday, April 23, 2011
QLD	Anzac Day	Monday 25 April	2011	04/25/11	Monday, April 25, 2011
QLD	Easter Monday	Tuesday 26 April **	2011	04/26/11	Tuesday, April 26, 2011
QLD	Labour Day	Monday 2 May	2011	05/02/11	Monday, May 02, 2011
QLD	Queen's Birthday	Monday 13 June	2011	06/13/11	Monday, June 13, 2011
QLD	Royal Queensland Show - Brisbane Area Only	Wednesday 17 August ***	2011	08/17/11	Wednesday, August 17, 2011
QLD	Christmas Day	Sunday 25 December****	2011	12/25/11	Sunday, December 25, 2011
QLD	Boxing Day	Monday 26 December	2011	12/26/11	Monday, December 26, 2011
QLD	Christmas Day	Tuesday 27 December****	2011	12/27/11	Tuesday, December 27, 2011
QLD	New Year's Day	Sunday 1 January	2012	01/01/12	Sunday, January 01, 2012
QLD	New Year's Day	Monday 2 January*	2012	01/02/12	Monday, January 02, 2012
QLD	Australia Day	Thursday 26 January	2012	01/26/12	Thursday, January 26, 2012
QLD	Good Friday	Friday 6 April	2012	04/06/12	Friday, April 06, 2012
QLD	Saturday after Good Friday	Saturday 7 April	2012	04/07/12	Saturday, April 07, 2012
QLD	Easter Monday	Monday 9 April	2012	04/09/12	Monday, April 09, 2012
QLD	Anzac Day	Wednesday 25 April	2012	04/25/12	Wednesday, April 25, 2012
QLD	Labour Day	Monday 7 May	2012	05/07/12	Monday, May 07, 2012
QLD	Queen's Diamond Jubilee	Monday 11 June**	2012	06/11/12	Monday, June 11, 2012
QLD	Royal Queensland Show - Brisbane Area Only	Wednesday 15 August***	2012	08/15/12	Wednesday, August 15, 2012
QLD	Queen's Birthday	Monday 1 October	2012	10/01/12	Monday, October 01, 2012
QLD	Christmas Day	Tuesday 25 December	2012	12/25/12	Tuesday, December 25, 2012
QLD	Boxing Day	Wednesday 26 December	2012	12/26/12	Wednesday, December 26, 2012
QLD	New Year's Day	Tuesday 1 January	2013	01/01/13	Tuesday, January 01, 2013
QLD	Australia Day	Monday 28 January*	2013	01/28/13	Monday, January 28, 2013
QLD	Good Friday	Friday 29 March	2013	03/29/13	Friday, March 29, 2013
QLD	Easter Saturday	Saturday 30 March	2013	03/30/13	Saturday, March 30, 2013
QLD	Easter Monday	Monday 1 April	2013	04/01/13	Monday, April 01, 2013
QLD	Anzac Day	Thursday 25 April	2013	04/25/13	Thursday, April 25, 2013
QLD	Queen's Birthday	Monday 10 June	2013	06/10/13	Monday, June 10, 2013
QLD	Royal Queensland Show	Wednesday 14 August	2013	08/14/13	Wednesday, August 14, 2013
QLD	Labour Day	Monday 7 October	2013	10/07/13	Monday, October 07, 2013
QLD	Christmas Day	Wednesday 25 December	2013	12/25/13	Wednesday, December 25, 2013
QLD	Boxing Day	Thursday 26 December	2013	12/26/13	Thursday, December 26, 2013

Table 118 Holidays:	South	Australia
---------------------	-------	-----------

Area	Holiday	Date1	Year	Date	Full Date
SA	New Year's Day	Monday 3 January *	2011	01/03/11	Monday, January 03, 2011
SA	Australia Day	Wednesday 26 January	2011	01/26/11	Wednesday, January 26, 2011
SA	Adelaide Cup	Monday 14 March	2011	03/14/11	Monday, March 14, 2011
SA	Good Friday	Friday 22 April	2011	04/22/11	Friday, April 22, 2011
SA	Saturday after Good Friday	Saturday 23 April	2011	04/23/11	Saturday, April 23, 2011
SA	Easter Monday	Monday 25 April	2011	04/25/11	Monday, April 25, 2011
SA	Anzac Day	Monday 25 April	2011	04/25/11	Monday, April 25, 2011
SA	Easter Tuesday	Tuesday 26 April **	2011	04/26/11	Tuesday, April 26, 2011
SA	Queen's Birthday/ Volunteers Day	Monday 13 June	2011	06/13/11	Monday, June 13, 2011
SA	Labour Day	Monday 3 October	2011	10/03/11	Monday, October 03, 2011
SA	Christmas Day	Sunday 25 December and Monday 26 December***	2011	12/25/11	Sunday, December 25, 2011
SA	Christmas Day	Sunday 25 December and Monday 26 December***	2011	12/26/11	Monday, December 26, 2011
SA	Proclamation Day	Monday 26 December and	2011	12/26/11	Monday, December 26, 2011
SA	Proclamation Day	Tuesday 27 December****	2011	12/27/11	Tuesday, December 27, 2011
SA	New Year's Day	Sunday 1 January	2012	01/01/12	Sunday, January 01, 2012
SA	New Year's Day	Monday 2 January*	2012	01/02/12	Monday, January 02, 2012
SA	Australia Day	Thursday 26 January	2012	01/26/12	Thursday, January 26, 2012
SA	Adelaide Cup	Monday 12 March**	2012	03/12/12	Monday, March 12, 2012
SA	Good Friday	Friday 6 April	2012	04/06/12	Friday, April 06, 2012
SA	Saturday after Good Friday	Saturday 7 April	2012	04/07/12	Saturday, April 07, 2012
SA	Easter Monday	Monday 9 April	2012	04/09/12	Monday, April 09, 2012
SA	Anzac Day	Wednesday 25 April	2012	04/25/12	Wednesday, April 25, 2012
SA	Queen's Birthday / Volunteers Day	Monday 11 June	2012	06/11/12	Monday, June 11, 2012
SA	Labour Day	Monday 1 October	2012	10/01/12	Monday, October 01, 2012
SA	Christmas Eve	Monday, 24 December**	2012	12/24/12	Monday, December 24, 2012
SA	Christmas Day	Tuesday 25 December	2012	12/25/12	Tuesday, December 25, 2012
SA	Boxing Day / Proclamation Day	Wednesday 26 December	2012	12/26/12	Wednesday, December 26, 2012
SA	New Year's Eve	Monday, 31 December**	2012	12/31/12	Monday, December 31, 2012
SA	New Year's Day	Tuesday 1 January	2013	01/01/13	Tuesday, January 01, 2013
SA	Australia Day	Monday 28 January*	2013	01/28/13	Monday, January 28, 2013
SA	Adelaide Cup	Monday 11 March	2013	03/11/13	Monday, March 11, 2013
SA	Good Friday	Friday 29 March	2013	03/29/13	Friday, March 29, 2013
SA	Saturday after Good Friday	Saturday 30 March	2013	03/30/13	Saturday, March 30, 2013
SA	Easter Monday	Monday 1 April	2013	04/01/13	Monday, April 01, 2013
SA	Anzac Day	Thursday 25 April	2013	04/25/13	Thursday, April 25, 2013
SA	Queen's Birthday / Volunteers Day	Monday 10 June	2013	06/10/13	Monday, June 10, 2013
SA	Labour Day	Monday 7 October	2013	10/07/13	Monday, October 07, 2013
SA	Christmas Eve **	Tuesday 24 December	2013	12/24/13	Tuesday, December 24, 2013
SA	Christmas Day	Wednesday 25 December	2013	12/25/13	Wednesday, December 25, 2013
SA	Boxing Day / Proclamation Day	Thursday 26 December	2013	12/26/13	Thursday, December 26, 2013
SA	New Years Eve**	Tuesday 31 December	2013	12/31/13	Tuesday, December 31, 2013

Table	119	Holidays:	Tasmania
-------	-----	------------------	----------

Area	Holiday	Date1	Year	Date	Full Date
TAS	New Year's Day	Monday 3 January *	2011	01/03/11	Monday, January 03, 2011
TAS	Australia Day	Wednesday 26 January	2011	01/26/11	Wednesday, January 26, 2011
TAS	Eight Hours Day / Labour Day	Monday 14 March	2011	03/14/11	Monday, March 14, 2011
TAS	Good Friday	Friday 22 April	2011	04/22/11	Friday, April 22, 2011
TAS	Easter Monday	Monday 25 April	2011	04/25/11	Monday, April 25, 2011
TAS	Anzac Day	Monday 25 April	2011	04/25/11	Monday, April 25, 2011
TAS	Queen's Birthday	Monday 13 June	2011	06/13/11	Monday, June 13, 2011
TAS	Christmas Day	Sunday 25 December and Tuesday 27 December **	2011	12/25/11	Sunday, December 25, 2011
TAS	Christmas Day	Sunday 25 December and Tuesday 27 December **	2011	12/27/11	Tuesday, December 27, 2011
TAS	Boxing Day	Monday 26 December	2011	12/26/11	Monday, December 26, 2011
TAS	New Year's Day	Monday 2 January *	2012	01/02/12	Monday, January 02, 2012
TAS	Australia Day	Thursday 26 January	2012	01/26/12	Thursday, January 26, 2012
TAS	Eight Hours Day	Monday 12 March	2012	03/12/12	Monday, March 12, 2012
TAS	Good Friday	Friday 6 April	2012	04/06/12	Friday, April 06, 2012
TAS	Easter Monday	Monday 9 April	2012	04/09/12	Monday, April 09, 2012
TAS	Anzac Day	Wednesday 25 April	2012	04/25/12	Wednesday, April 25, 2012
TAS	Queen's Birthday	Monday 11 June	2012	06/11/12	Monday, June 11, 2012
TAS	Christmas Day	Tuesday 25 December	2012	12/25/12	Tuesday, December 25, 2012
TAS	Boxing Day	Wednesday 26 December	2012	12/26/12	Wednesday, December 26, 2012
TAS	New Year's Day	Tuesday 1 January	2013	01/01/13	Tuesday, January 01, 2013
TAS	Australia Day	Monday 28 January*	2013	01/28/13	Monday, January 28, 2013
TAS	Royal Hobart Regatta	Monday 11 February**	2013	02/11/13	Monday, February 11, 2013
TAS	Eight Hours Day	Monday 11 March	2013	03/11/13	Monday, March 11, 2013
TAS	Good Friday	Friday 29 March	2013	03/29/13	Friday, March 29, 2013
TAS	Easter Monday	Monday 1 April	2013	04/01/13	Monday, April 01, 2013
TAS	Easter Tuesday	Tuesday 2 April***	2013	04/02/13	Tuesday, April 02, 2013
TAS	Anzac Day	Thursday 25 April	2013	04/25/13	Thursday, April 25, 2013
TAS	Queen's Birthday	Monday 10 June	2013	06/10/13	Monday, June 10, 2013
TAS	Recreation Day	Monday 4 November**	2013	11/04/13	Monday, November 04, 2013
TAS	Christmas Day	Wednesday 25 December	2013	12/25/13	Wednesday, December 25, 2013
TAS	Boxing Day	Thursday 26 December	2013	12/26/13	Thursday, December 26, 2013

Table 120 Holidays: Victoria

Area	Holiday	Date1	Year	Date	Full Date
VIC	New Year's Day	Saturday 1 January and Monday 3 January *	2011	01/01/11	Saturday, January 01, 2011
VIC	New Year's Day	Saturday 1 January and Monday 3 January *	2011	01/03/11	Monday, January 03, 2011
VIC	Australia Day	Wednesday 26 January	2011	01/26/11	Wednesday, January 26, 2011
VIC	Labour Day	Monday 14 March	2011	03/14/11	Monday, March 14, 2011
VIC	Good Friday	Friday 22 April	2011	04/22/11	Friday, April 22, 2011
VIC	Saturday after Good Friday	Saturday 23 April	2011	04/23/11	Saturday, April 23, 2011
VIC	Easter Monday	Monday 25 April	2011	04/25/11	Monday, April 25, 2011
VIC	Anzac Day	Tuesday 26 April **	2011	04/26/11	Tuesday, April 26, 2011
VIC	Queen's Birthday	Monday 13 June	2011	06/13/11	Monday, June 13, 2011
VIC	Melbourne Cup	Tuesday 1 November ***	2011	11/01/11	Tuesday, November 01, 2011
VIC	Christmas Day	Tuesday 27 December ****	2011	12/27/11	Tuesday, December 27, 2011
VIC	Boxing Day	Monday 26 December	2011	12/26/11	Monday, December 26, 2011
VIC	New Year's Day	Sunday 1 January	2012	01/01/12	Sunday, January 01, 2012
VIC	New Year's Day	Monday 2 January*	2012	01/02/12	Monday, January 02, 2012
VIC	Australia Day	Thursday 26 January	2012	01/26/12	Thursday, January 26, 2012
VIC	Labour Day	Monday 12 March	2012	03/12/12	Monday, March 12, 2012
VIC	Good Friday	Friday 6 April	2012	04/06/12	Friday, April 06, 2012
VIC	Saturday after Good Friday	Saturday 7 April	2012	04/07/12	Saturday, April 07, 2012
VIC	Easter Monday	Monday 9 April	2012	04/09/12	Monday, April 09, 2012
VIC	Anzac Day	Wednesday 25 April	2012	04/25/12	Wednesday, April 25, 2012
VIC	Queen's Birthday	Monday 11 June	2012	06/11/12	Monday, June 11, 2012
VIC	Melbourne Cup	Tuesday 6 November **	2012	11/06/12	Tuesday, November 06, 2012
VIC	Christmas Day	Tuesday 25 December	2012	12/25/12	Tuesday, December 25, 2012
VIC	Boxing Day	Wednesday 26 December	2012	12/26/12	Wednesday, December 26, 2012
VIC	New Year's Day	Tuesday 1 January	2013	01/01/13	Tuesday, January 01, 2013
VIC	Australia Day	Monday 28 January*	2013	01/28/13	Monday, January 28, 2013
VIC	Labour Day	Monday 11 March	2013	03/11/13	Monday, March 11, 2013
VIC	Good Friday	Friday 29 March	2013	03/29/13	Friday, March 29, 2013
VIC	Saturday after Good Friday	Saturday 30 March	2013	03/30/13	Saturday, March 30, 2013
VIC	Easter Monday	Monday 1 April	2013	04/01/13	Monday, April 01, 2013
VIC	Anzac Day	Thursday 25 April	2013	03/25/13	Monday, March 25, 2013
VIC	Queen's Birthday	Monday 10 June	2013	06/10/13	Monday, June 10, 2013
VIC	Melbourne Cup	Tuesday 5 November**	2013	11/05/13	Tuesday, November 05, 2013
VIC	Christmas Day	Wednesday 25 December	2013	12/25/13	Wednesday, December 25, 2013
VIC	Boxing Day	Thursday 26 December	2013	12/26/13	Thursday, December 26, 2013

F. Appendix – Candidate Event Days

The candidate event days used in the analysis include those in Table 121.

Candidate Event Days					
Tuesday, October 04, 2011	Wednesday, January 02, 2013				
Wednesday, October 05, 2011	Thursday, January 03, 2013				
Friday, October 21, 2011	Friday, January 04, 2013				
Sunday, October 30, 2011	Saturday, January 05, 2013				
Wednesday, November 09, 2011	Sunday, January 06, 2013				
Friday, November 11, 2011	Monday, January 07, 2013				
Saturday, November 12, 2011	Tuesday, January 08, 2013				
Monday, November 14, 2011	Thursday, January 10, 2013				
Saturday, November 19, 2011	Friday, January 11, 2013				
Monday, November 28, 2011	Saturday, January 12, 2013				
Tuesday, November 29, 2011	Sunday, January 13, 2013				
Tuesday, January 03, 2012	Monday, January 14, 2013				
Monday, January 09, 2012	Thursday, January 17, 2013				
Tuesday, January 10, 2012	Friday, January 18, 2013				
Wednesday, January 11, 2012	Saturday, January 19, 2013				
Thursday, January 12, 2012	Sunday, January 20, 2013				
Tuesday, January 17, 2012	Monday, January 21, 2013				
Monday, January 23, 2012	Tuesday, January 22, 2013				
Tuesday, January 24, 2012	Thursday, January 24, 2013				
Sunday, January 29, 2012	Sunday, January 27, 2013				
Monday, January 30, 2012	Tuesday, January 29, 2013				
Monday, February 06, 2012	Wednesday, January 30, 2013				
Tuesday, February 07, 2012	Thursday, January 31, 2013				
Monday, February 13, 2012	Thursday, February 07, 2013				
Monday, February 20, 2012	Sunday, February 17, 2013				
Friday, February 24, 2012	Monday, February 18, 2013				
Saturday, February 25, 2012	Sunday, February 24, 2013				
Sunday, February 26, 2012	Monday, February 25, 2013				
Tuesday, February 28, 2012	Thursday, February 28, 2013				
Tuesday, October 16, 2012	Wednesday, March 06, 2013				
Sunday, November 04, 2012	Thursday, March 07, 2013				
Friday, November 23, 2012	Friday, March 08, 2013				
Thursday, November 29, 2012	Saturday, March 09, 2013				
Friday, November 30, 2012	Tuesday, March 12, 2013				
Saturday, December 01, 2012	Friday, March 15, 2013				
Tuesday, December 04, 2012	Saturday, March 16, 2013				
Wednesday, December 05, 2012	Thursday, March 21, 2013				
Wednesday, December 12, 2012	Friday, March 22, 2013				
Thursday, December 13, 2012					
Sunday, December 16, 2012					
Monday, December 17, 2012					
Tuesday, December 18, 2012					
Wednesday, December 19, 2012					
Thursday, December 20, 2012					
Sunday, December 23, 2012					

Table 121 Candidate Event Days