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Disclaimer 

(a) Purpose – This Guide has been prepared to provide information about five minute electricity demand 
forecasting - Neural Network Model Documentation, as at the date of publication.  

(b) No substitute – This Guide is not a substitute for, and should not be read in lieu of, the National 
Electricity Law (NEL), the National Electricity Rules (Rules) or any other relevant laws, codes, rules, 
procedures or policies. Further, the contents of this Guide do not constitute legal or business advice 
and should not be relied on as a substitute for obtaining detailed advice about the NEL, the Rules, or 
any other relevant laws, codes, rules, procedures or policies, or any aspect of the national electricity 
market or the electricity industry. 

(c) No Warranty – While AEMO has used due care and skill in the production of this Guide, neither AEMO, 
nor any of its employees, agents and consultants make any representation or warranty as to the 
accuracy, reliability, completeness or suitability for particular purposes of the information in this Guide.   

(a) Limitation of liability - To the extent permitted by law, AEMO and its advisers, consultants and other 
contributors to this Guide (or their respective associated companies, businesses, partners, directors, 
officers or employees) shall not be liable for any errors, omissions, defects or misrepresentations in 
the information contained in this Guide, or for any loss or damage suffered by persons who use or rely 
on such information (including by reason of negligence, negligent misstatement or otherwise). If any 
law prohibits the exclusion of such liability, AEMO’s liability is limited, at AEMO’s option, to the re-
supply of the information, provided that this limitation is permitted by law and is fair and reasonable. 

© 2014 - All rights reserved. 
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Glossary 

a) In this document, a word or phrase in this style has the same meaning as given to that term in 
the NER. 

b) In this document, capitalised words or phrases or acronyms have the meaning set out opposite 
those words, phrases, or acronyms in the table below. 

c) Unless the context otherwise requires, this document will be interpreted in accordance with 
Schedule 2 of the National Electricity Law. 

Table 1: Glossary 

Term Meaning 

NER National Electricity Rules 

NEM National Electricity Market 

EMMS Electricity Market Management System 

NEMMCO National Electricity Market Management Company 

TRANSGRID Transmission Network Service Provider in New South Wales 



FIVE MINUTE ELECTRICITY DEMAND FORECASTING: NEURAL NETWORK MODEL 
DOCUMENTATION 

 

 
Doc Ref: SO_FD_01 - V2 11 September 2014 Page 6 of 18 

1 Objective 

To provide reliable, practicable on-line forecasts of 5-minute electricity demand from recent 
previous demand movement. 

2 Background 

In a pilot study prepared by David Edelman for TRANSGRID in 1997, a type of nonlinear time 
series model, known as a Neural Network model, was shown to perform well in forecasting 5-
minute, half-hourly, and hourly electricity demand using only time series data of recent demand. 
Neural Network models are a 

recently developed class of nonlinear models, used for time series and other types of data, 
based on principles derived from what is known about the structure of the brain (for a brief 
discussion of Neural Network modeling, please see Appendix III). Certain transformed inputs 
have been found to be fairly stable with respect to such types of variation and were found to 
have significant predictive power for short-term demand forecasts, and were used to form the 
basis of the Neural Network model. For the 5-minute forecasting outcome, which is of primary 
interest here, these inputs are the logarithmic changes in demand over the past four 5-minute 
periods immediately prior to the period being predicted, and five such changes leading up to and 
including the period occurring exactly one week before the time of the desired prediction. 

The family of Neural Network models was chosen over more conventional families of time series 
prediction models, such as Linear, Moving Average, and Spectral families, primarily because of 
Neural Networks’ ability to incorporate nonstandard functional relationships in a relatively simple 
form. Also, in analogy to brain function, logical ‘if… then’-type relationships are implicitly 
included, which, when combined with more numerical or ‘analog’-type relationships, has been 
found to provide effective models for characterising many complex systems in practical 
application, as is discussed further in Appendix III. 

The data available for the fitting, obtained from the regions of NSW, Queensland, Victoria, and 
SA, were provided by NEMMCO, and included sets of the most recent full-year demand data with 
sampling at 5-minute intervals, for NSW and Victoria, similar data for one half-year for 
Queensland, and half-hourly data for South Australia. In the case of NSW the large fixed, loads 
of known value, due to hydroelectric pumping stations had been removed from the data, while for 
the other states, only information based on total demand was available. 

Preliminary examination suggested that this particular model was likely to be stable from season 
to season, so only Perennial or ‘year-round’ models were fitted. The validity of this assumption 
was later verified. 

The performance criteria were identified before the fitting had begun, with the benchmark for 
comparison being the ‘no-change’ model, hereafter referred to as the naïve model, which uses 
present level of demand as the 5-minute forecast 

[This model was used previously and is apparently still being used in some regions.] The measures 
used to analyse the data sets are: 

Mean-Squared (Percentage) Error (MSE) and its relative reduction over naïve, D % (delta); 

Mean-Absolute Percentage Error (MAPE); 

%Correlation between predicted and actual relative changes in demand; and 

99% Prediction Interval (PI) width. The Mean-Squared Error (MSE) of prediction, the average of 
squared distances between prediction and outcome, is a universally accepted criterion, which is 
known to be optimum for normal or ‘bell-curve’ variables. This measure is presented in two forms, 
raw MSE and D %, the relative reduction in MSE as compared to the naïve predictor, where the 
aim is to achieve as small a Mean-Squared Error as possible. 
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Another common measure, seen to be particularly useful here, is the Mean-Absolute Percentage 
Error (MAPE) of prediction, which is the average of the absolute distances between prediction and 
outcome, which should also be made as small as possible. The percentage (%) correlation 
between predicted and actual relative changes in demand is an intuitive, useful scale-independent 
measure of linear relation, particularly helpful here as the benchmark prediction has, by definition, 
correlation zero with the actual relative change, and where a higher correlation indicates more 
accurate prediction. [To motivate the correlation measure, if noise and an independent signal of the 
same variance are added together, for instance, then the sum has 50% correlation with the signal.] 

Finally, the 99% Prediction Interval (PI) is the width either side of the point prediction needed to 
capture 99% of the actual changes which were observed in the historical data. For a good 
predictor, this range should be as narrow as possible. 

3 Summary and Description of the Neural Network Model 

As in the model produced previously for TRANSGRID, the inputs for a given desired prediction 
consist of the unit constant (i.e., the number ‘1’) plus the 5-minute (natural) logarithmic differences 
in demand at lags 2020, 2019, 2018, 2017, 2016 (exactly one week previous), 4, 3, 2, and 1. 
These 9 inputs are multiplied, as a row vector, by the 10 by 4 ‘Input-to-Hidden’ matrix for the 
appropriate region, as shown in Appendix II, to produce a row vector of four elements. From these 
four numbers the four ‘hidden’ activations are produced by applying the logistic (1/(1+exp(-x)) 
transformation to each. The resulting ‘hidden activations’ will then be strictly between 0 and 1, 
analogous to neurons in the brain which are either switched ‘on’ or ‘off’. They are referred to as 
‘hidden’ because they are of no interest in and of themselves but are merely relays which are not 
seen at the applications level. 

Next, the unit constant is pre-pended to this four-vector to produce a five-vector, which is then 
multiplied by the appropriate ‘Hidden-to-Output’ column vector to produce a single number. Finally, 
the logistic transformation mentioned above applied to this number, after which the result is 
multiplied by 2 and then centred by subtracting 1. This result will be the next predicted logarithmic 
change in demand. The demand forecast is computed by adding this figure to the natural logarithm 
of current demand and exponentiating the result. 
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3.1 Example of a 5 minute demand forecast calculation 

As a numerical example, consider the demand for NSW (in MW) on 1 February, 1998 at times 
0:00, 0:05, 0:10, 0:15, 0:20, and 0:25 which were respectively 6010, 5990, 6000, 5970, 5960, 
and 5880. The levels exactly one week later on 8 February at times 0:00, 0:05, 0:10, 0:15, and 
0:20 were 6250, 6280, 6180, 6210, and 6160 respectively. For predicting demand at 0:25 on 8 
February: 

Step 1: 

We begin by taking the (1,1) element of the NSW ‘Input-to-Hidden’ matrix given in Appendix II 
(the number –1.180) and adding it to product of (2,1) element (the number 0.788) with the 
logarithmic change from 0:00 to 0:05 on 1 February, which is log(5990/6010), or -.0033, then 
adding the product of the (3,1) element (the number -3.033) with the next logarithmic change, 
Log(6000/5990), continuing similarly as follows: 

-1.180+0.788 Log(5990/6010)-3.033 Log(6000/5990)+… +2.333 Log(6160/6210)= –1.11 

we complete Step 1, computing the first of the four hidden activations, by applying the logistic 
transformation to the number –1.11: 

1 /(1 +exp(-(-1.11))) =0.248 

This completes Step 1, the computation of the hidden activation, for the first hidden unit. For 
computation of the other three units, repeat Step 1 using the same inputs, but the weights in 
columns 2 through 4 of the ‘Input-to-Hidden’ Matrix in place of those in column 1 as presented 
above. 

The resulting four activations are then 0.248 0.717 0.536 0.124 

Step 2: 

To produce the output activation of the network, the ‘Hidden-to-Output’ vector is used and a 
weighted sum of the hidden activations, plus the initial constant is computed: 

-0.766(1) + 0.172(.248) – 0.134(.717) + 1.061(.536) + 1.923(.124) = -0.012 

to which is applied the logistic transformation, 1/(1+exp(-(-0.012)))= 0.497, which is the output 
activation of the network. 

Step 3:  

To compute the predicted logarithmic change, the output activation is multiplied by 2 after which 
1 is subtracted: 

2(.497)-1= -0.006  

 

Step 4:  

To get the final prediction, the predicted logarithmic change is added to the logarithm of current 
demand, and the result is exponentiated: 

exp ( Log (6160 )-0.006)=6123 

to complete the computation of the predicted value at 0:25 on 8 February. 

 

Step 5:  

If a 99% prediction range is required, then we refer to Table 1 in the Appendix 1 to find that we 
must add and subtract 2.4% to the prediction of – 0.006 prior to exponentiation: 

Lower Limit = exp(Log(6160)-0.006-.024)=5978 Upper Limit = exp(Log(6160)-0.006+.024)=6272 

The actual demand at 0:25 on 8 February, incidentally, was 6100, which did fall within the limits, 
and which implies an error of 0.38% for the point prediction in this case.
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Appendix A Performance Summary of the Neural Network Model 
(Separate Fits, Various States) 

Table 2: Performance Summary of the Neural Network Model (Separate Fits, Various States) 

Region 
MSE % 

(NAÏVE) BENCHMARK 

MSE % 
(MODEL) 

D % 
(REDUCT.) 

CORR.(%) 
(MODEL) 

MAPE 
% 

(MODEL) 

99%PI 
(MODEL) 

NSW 0.0076 0.0048 37 61 0.52 (± )2.4 

Victoria 0.0081 0.0061 25 50 0.58 (± )2.4 

Qld. 0.0059 0.0039 33 58 0.57 (±)1.9 

SA (est.) 0.0076* 0.0061* 20* 40* 0.58 (±)2.7* 

* denotes extrapolated estimate for SA using NSW model 
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Appendix B Neural Network Matrix Weights for NSW, Queensland, 
Victoria, and South Australia 

B.1 NSW (Pumping Station Load Removed) Perennial Model Data Basis: 5 
Minute Demand May 1997 - May 1998 

Input-to-Hidden Weight Matrix: 

-1.18083652 .912479873 .168973233 -1.92511602 

.787908442 -.280762392 -.0541686846 -.07762109 

-3.03342919 -1.28836905 -.00341524871 -.161543795 

-.805006387 -1.64200928 .662373364 .344925654 

-2.24481232 -2.93899286 .409496988 1.99314546 

-6.91548304 -.413204144 2.02470863 .843839487 

1.899275 2.10931932 -.140064819 .648678667 

1.67724099 -.0174202002 .0654530737 .752352854 

3.34159312 -.498683481 -.384690811 1.15456333 

2.33262311 1.10089596 -1.07629121 .839209192 

Hidden-to-Output Weight Matrix: 

-.766221613 

.171686888 

-.134112006 

1.06132145 

1.9234954 

B.2 Queensland (Estimated Pumping Station Load Removed) Perennial 
Model Data Basis: 5 Minute Demand Jan-June 1998 

Input-to-Hidden Weight Matrix: 

.282659953 -1.49839082 -.537210429 .225580113 

18.3616164 15.6772863 -71.7199107 -3.61382244 

.138462075 -20.5994971 -30.1141459 8.57056617 

19.6360212 -20.1458364 3.02027769 56.3019205 

-4.66079932 8.23915687 41.4881728 55.5477574 

-5.39211141 125.600091 107.21279 57.0884462 
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7.92197629 -9.82189813 -68.7600056 -9.66963952 

-2.6961764 5.31600322 -36.6341694 -18.2310529 

-14.2446113 15.6655053 11.4491824 -25.6384018 

-17.957021 19.43863 1.34015688 -55.9344838 

Hidden to Output Weight Matrix: 

.0102750063 

-.0633274108 

.0281062647 

-.0306966894 

.0575090353 

B.3 Victoria Perennial Model Data Basis: 5 Minute Demand May 1997 - June 
1998 

Input-to-Hidden Weight Matrix: 

.27495436 -2.58223513 .202028899 -.183376368 

-42.6884013 3.27195921 -31.9286541 34.7823148 

-30.3009983 12.4921685 -34.9321011 53.6965606 

10.7550139 10.6883177 -17.023041 68.3243593 

3.72941387 38.9559016 -42.4043238 94.6937631 

94.7567329 54.4311731 59.7635915 1.79578719 

-44.8516834 -21.3890407 8.87422679 -37.2991779 

-70.8706747 -30.8101219 -10.5942122 -32.0344736 

-22.4164121 -6.49391306 9.98717072 -52.6541859 

11.0632082 31.1412323 7.02001956 -44.9470033 

Hidden to Output Weight Matrix: 

-.0475383991 

-.0431145248 

.0624797954 

.0781704867 

.0513941215 
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B.4 South Australia (Pumping Station Load Removed) Perennial Model 

Data Basis: Extrapolated from Average Half-Hourly Demand 1997 - 1998 5-Minute Demand, 
other states 

Use weights for NSW Perennial model 
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Appendix C A Brief Introduction to Neural Network Modeling 

While many modeling methods for real-world application have traditionally focused on ‘linear’ 
methods, such as linear regression, the past two decades have seen a dramatic increase in the 
application of nonlinear models in many areas. The increased efficiency which is required in the 
present era, accompanied by enormous technological improvement in computational capability and 
in data storage and processing, have meant that the development of more complex models for 
more complete, perhaps more subtle, modeling relationships has become and will continue to be a 
priority in many areas of application. Of these new nonlinear models, one family of generic models 
has begun to dominate, owing perhaps to both its ‘universality’ (networks’ ability to characterise 
virtually any desired functional relationship) and its appealing analogy to brain function. 

In order to understand the basic motivation for Neural Network models (such as those being 
applied to the load prediction problem) it is helpful to describe a simple model of brain function. If 
one imagines a set of signals, perhaps emanating from an external stimulus, being propagated 
through axons and conveyed via synaptic connections of various strengths to neurons which ‘fire’, 
or activate, once a certain threshold is exceeded, and then the subsequent relay of these signals 
further to other neurons via axons and synaptic connections, continuing in a likewise manner, then 
a mathematical model for an input/output relationship is suggested. 

Consider a system in which there exist signals which are regarded as inputs, which are relayed at 
various strengths or 'weights' to intermediate 'units', the signals for which are then relayed 
according to further weights, again and again until an output is reached. Then to alter the 
input/output relationship, one would merely need to change the values of the connection strengths, 
or weight-coefficient parameters, just as one might vary coefficients in linear regression. Following 
further, if the input/output relationship could be assessed or evaluated as to 'suitability' according to 
some numerical score, then the weights could be varied, randomly at first, then more pointedly, 
until a 'good' set of weight coefficients was achieved, as in the regression case, where ‘least-
squares’ estimates are usually used. For understandable reasons, this process of adaptation of 
weight coefficients for suitability is called ‘learning’. 

While linear models such as regression have existed and been applied successfully to many 
practical problems for some time for modeling input/output relationships, the introduction in Neural 
Network models of nonlinearity in the intermediate (often referred to as 'hidden') units leads to a 
qualitative shift in the modeling power of the system, in an analogous manner to the way in which 
the introduction of the diode as a nonlinear element into a standard electrical circuit was first seen 
to make possible the field of electronics when it was first introduced. 

A mathematical property of Neural Networks, proved by Russian mathematicians in the 1960's, 
later clarified by work in the 1970's by mathematicians in the United States, is the Universal 
Approximation property of Neural Networks. In a word (under mild regularity conditions), this states 
that given any input/output relationship which exists for a finite number of examples, a Neural 
Network of sufficient complexity can approximate it arbitrarily well. 

In practice, this means that for solving any given problem, instead of searching from within the 
potentially infinite number of possible functional families which could characterise the input/output 
relationship at hand, it suffices to consider the Neural Network family. 

While this property has been understood for some time now, it is only with the recent development 
of high-speed of computing that it has any real meaning for useful real-world problems, as the 
Neural Network models needed for many or most nontrivial problems often require intense 
computation for fitting or 'learning'. 

It is also perhaps worth noting that the image of the Neural Network as a 'superbrain' which might 
be implied from the brain analogy, should be avoided. Instead, perhaps the rather less glamorous 
image of the 'cockroach' is more appropriate; while cockroaches are not seen as being among the 
most insightful creatures on the planet, in a survival sense they indeed have arguably been among 
the most successful, having achieved this by reacting effectively to simple stimulus. As a prediction 
model, then, perhaps one might well do well to aim for a sort of 'cockroach efficiency'. This 
philosophy has guided the modeling for the present application. 
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Appendix D Schematic Diagram for Neural Network Load Prediction 
Model 

 

Figure 1 Schematic Diagram for Neural Network Load Prediction Model 
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Appendix E Sample Scatter Diagram for NSW Prediction Predicted 
(Horizontal) vs. Actual (Vertical), in % 

 

Figure 2 Sample Scatter Diagram for NSW Prediction Predicted (Horizontal) vs. Actual (Vertical), in % 

 

The above diagram is a plot of Forecast Percentage Change (Horizontal) against Actual 
Percentage Change (Vertical). [If there were no predictability, or no value in the forecast, then no 
linear trend would appear.] 
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Appendix F A Comment on Noise in 5-Minute Demand Forecasting 

Previously, we have referred to the noise in the context of forecasting. This is in keeping with the 
traditional engineering approach of dividing a data series into two parts:  

(i) Signal, a fixed predictable value, and  

(ii) Noise, an inherently unpredictable random error. Generally, the objective in any 
forecasting problem is to remove as much of the Noise, or random error, as possible, so 
that the what remains is predominantly Signal. 

For electricity demand forecasting, the nature of random error appears to be a combination of 
random bell-curve variables, plus extra occasional large ‘shocks’. The largest such shocks 
encountered in electricity demand in Australia appear to be due to large industrial loads that have a 
step change characteristic such as pumping station loads. Depending on one’s point of view, these 
changes may be regarded as either being random or non-random; while the amount of pumping 
station load is often predictable, the exact timing of it, being subject to substantial security protocol 
of varying duration, is not predictable unless it is communicated to the forecasting system, which is 
of course highly recommended. 

In NSW and Victoria there appear to exist other sources of ‘shocks’, or large changes in demand, 
possibly due to smelting works, amounting to several per day. These do not appear to be present 
in the Queensland data, nor are they evident in the half-hourly South Australian data available. In 
other respects, the noise profiles in all regions appear to be similar, with regard to percentage 
changes in demand. 
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Appendix G A Note on Millennium Risk Exposure 

To the extent that the Neural Network formulae are mathematical relationships from input to output, 
the only millennium risk involves the reliability of the system furnishing the input data to the model, 
or of the hardware used to implement the formulae; there is no inherent dependence of the 
forecasting formulae themselves on any Date functions. 
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Appendix H Summary of Statistical Formulae 

H.1 Relative/Percentage Error 

In prediction or forecasting, the relative error is defined as 

(Predicted Value- Actual Value)/Actual Value 

The percentage error is merely 100 times the relative error. 

Mean Absolute Percentage Error (MAPE) 

The absolute value (ABS) of a number is merely the distance of that number from zero (e.g. 
ABS(3)=3, ABS(-2)=2). These are computed by removing all minus (‘-’) signs. Hence, Absolute 
Percentage Error is the absolute value of the percentage error defined above. The Mean Absolute 
Percentage Error, then, is the average of these values for all predictions. 

Mean Squared (Relative) Error (MSE) 

The Mean Squared (Relative) Error is defined as the average of all of the squares of relative errors 
for all predictions. 

Correlation 

The Correlation is the expected cross-product between two standardised variables. [A 
standardised variable is a variable with its mean (or average) subtracted, afterwards scaled by 
dividing by standard deviation.] The correlation for the sample is defined as 

r=
1

n

x x

s

y y

s

i

x

i

y

( )( )
 

  

 

where x, y, sx and sy are the sample means and standard deviations of the two samples. A perfect 
negative relation is indicated by a correlation of -1, and a perfect positive relation by a correlation 
of +1, with a correlation of 0 corresponding to no linear relation. The square of correlation, R2 , is 
often referred to as the coefficient of determination, and may be interpreted as the proportion of 
variation in one variable (e.g., ‘Actual’ Load) which is predictable by a linear function of the other 
variable (e.g. ‘Predicted’ Load). 

 


